<p>Random forest algorithm is a common classification method. However, if the weights of many attributes in a data set are not same or close to each other, the direct use of this algorithm for data training will lead to the neglect of the interrelationships between these attributes, and it is difficult to reflect the differences brought by different weights of different attributes. Worse, if the number of attributes in the data set is relatively large, many attributes will be given very little weight when normalization is satisfied, which will also lead to information loss. All of these will have a negative impact on the final result. To solve these problems, this paper proposes an algorithm combining random forest classification and fuzzy comprehensive evaluation, which not only take into account the correlation between attributes in data training, but also retain the information in the original data set to the maximun. At the same time, this algorithm significantly improves the accuracy of random forest training results.</p> <p> </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.