Key-value stores are a vital component in many scale-out enterprises, including social networks, online retail, and risk analysis. Accordingly, they are receiving increased attention from the research community in an effort to improve their performance, scalability, reliability, cost, and power consumption. To be effective, such efforts require a detailed understanding of realistic key-value workloads. And yet little is known about these workloads outside of the companies that operate them. This paper aims to address this gap.To this end, we have collected detailed traces from Facebook's Memcached deployment, arguably the world's largest. The traces capture over 284 billion requests from five different Memcached use cases over several days. We analyze the workloads from multiple angles, including: request composition, size, and rate; cache efficacy; temporal patterns; and application use cases. We also propose a simple model of the most representative trace to enable the generation of more realistic synthetic workloads by the community.Our analysis details many characteristics of the caching workload. It also reveals a number of surprises: a GET/SET ratio of 30:1 that is higher than assumed in the literature; some applications of Memcached behave more like persistent storage than a cache; strong locality metrics, such as keys accessed many millions of times a day, do not always suffice for a high hit rate; and there is still room for efficiency and hit rate improvements in Memcached's implementation. Toward the last point, we make several suggestions that address the exposed deficiencies.
We describe the software architecture, technical features, and performance of TICK (Transparent Incremental Checkpointer at Kernel level), a system-level checkpointer implemented as a kernel thread, specifically designed to provide fault tolerance in Linux clusters. This implementation, based on the 2.6.11 Linux kernel, provides the essential functionality for transparent, highly responsive, and efficient fault tolerance based on full or incremental checkpointing at system level. TICK is completely user-transparent and does not require any changes to user code or system libraries; it is highly responsive: an interrupt, such as a timer interrupt, can trigger a checkpoint in as little as 2.5µs; and it supports incremental and full checkpoints with minimal overhead-less than 6% with full checkpointing to disk performed as frequently as once per minute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.