Multiple-cation lead mixed-halide perovskites (MLMPs) have been recognized as ideal candidates in perovskite solar cells in terms of high efficiency and stability due to decreased open-circuit voltage loss and suppressed yellow phase formation. However, they still suffer from an unsatisfactory long-term moisture stability. In this study, phosphorus-containing Lewis acid and base molecules are employed to improve device efficiency and stability based on their multifunction including recombination reduction, phase segregation suppression, and moisture resistance. The strong fluorine-containing Lewis acid treatment can achieve a champion PCE of 22.02%. Unencapsulated and encapsulated devices retain 63% and 80% of the initial efficiency after 14 days of aging under 75% and 85% relative humidity, respectively. The better passivation of Lewis acid implies more halide defects than Pb defects at the MLMP surface. This unbalanced defect type results from phase segregation that is the synergistic effect of Cs and halide ion migrations. Identifying defect type based on different passivation effects is beneficial to not only choose suitable passivators to boost the efficiency and slow down the moisture degradation of MLMP solar cells, but also to understand the mechanism of defect-assisted moisture degradation.
Very
recently, two-dimensional (2D) perovskite nanosheets (PNSs),
taking the advantages of perovskite as well as the 2D structure properties,
have received an enormous level of interest throughout the scientific
community. In spite of this incredible success in perovskite nanocrystals
(NCs), self-assembly of many nanostructures in metal halide perovskites
has not yet been realized, and producing highly efficient red-emitting
PNSs remains challenging. In this Letter, we show that by using CsPbBrI2 perovskite nanoparticles (NPs) as a building block, PNSs
can emerge spontaneously under high ambient pressure via template-free
self-assembly without additional complicated operation. It is found
that the formation of PNSs is ascribed to the high pressure that provides
the driving force for the alignment of NPs in solution. Because of
the disappearance of the grain boundaries between the adjacent NPs
and increased crystallinity, these PNSs self-assembled from NPs exhibit
enhanced properties compared to the initial NPs, including higher
PL intensity and remarkable chemical stability toward light and water.
A rational molecule design strategy based on scaffold hopping was applied to discover novel leads, and then a series of novel pyrazole amide derivatives were designed, synthesized, characterized, and evaluated for their antifungal activities. Bioassay results indicated that some target compounds such as S3, S12, and S26 showed good in vivo antifungal activities; among them, S26 exhibited commendable in vivo protective activity with an 89% inhibition rate against Botrytis cinerea on cucumber at 100 μg/mL that is comparable to positive controls boscalid, isopyrazam, and fluxapyroxad. Microscopy observations suggested that S26 affects the normal fungal growth. Fluorescence quenching analysis and SDH (succinate dehydrogenase) enzymatic inhibition studies validated that S26 may not be an SDH inhibitor. Based on induction of plant defense responses testing, S26 enhanced the accumulation of RBOH, WRKY6, WRKY30, PR1, and PAL defense-related genes expression and the defense-associated enzyme phenylalanine ammonia lyase (PAL) expression on cucumber. These findings support that S26 not only displayed direct fungicidal activity but also exhibited plant innate immunity stimulation activity, and it could be used as a promising plant defense-related fungicide candidate.
Indole is a popular and functional scaffold existing widely in the fields of medicine, pesticides, spices, food and feed additives, dyes, and many others. Among indoles, 2-arylindole represents a particular and interesting subset but has attracted less attention for drug discovery. In this study, we report a general, practical one-pot assembly of a variety of 2-arylindole derivatives. To develop novel fungicide scaffolds, their fungicide activity was also evaluated. The bioassay results showed that many of the synthesized 2-arylindoles exhibited considerable fungicidal activities especially toward Rhizoctonia cerealis, and several demonstrated an inhibition rate of more than 90%. Notably, 4-fluoro-2-phenyl-1H-indole 6e was obtained with a broad spectrum of fungicidal activities, which showed excellent growth inhibition activities against R. cerealis, Rhizoctonia solani, Botrytis cinerea, Magnaporthe oryza, and Sclerotinia sclerotiorum with EC 50 values of 2. 31, 4.98, 6.78, 10.57, and 17.80 μg/mL, respectively. Preliminary fungicidal mode of action of 6e showed a significant inhibition effect on mycelial growth and spore germination. These results indicated that 2arylindoles as privileged scaffolds exhibited potential fungicidal activities that deserve further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.