Commuting carbon emissions are an essential component of urban carbon emissions, and determining how to reduce them is an area of great debate among researchers. The current research lacks a tool and instrument that can extensively account for residents’ commuting. Traditional methods are mainly based on questionnaire surveys, which have low accuracy at spatial and temporal aspects. High accuracy carbon emission accounting methods can effectively assist urban planning and achieve precise urban emissions reductions. This study applies a taxi commuting carbon emissions accounting method divided into two main steps. Firstly, the carbon emissions of taxi trajectories are calculated using taxi trajectory data and a carbon emission calculation method developed based on VSP. Secondly, the taxi trajectory and POI data are used to filter the commuter trajectory with the help of a two-step moving search method. In this way, the taxi commuting carbon emissions were obtained. Then, the spatial distribution characteristics of residential taxi commuting carbon emissions are analysed by spatial autocorrelation tools, which could facilitate low carbon zoning management. A typical working day in Hangzhou was selected as the research object of this study. The results show that (1) morning peak commuting carbon emissions in the main urban area of Hangzhou reached 2065.14 kg per hour, accounting for 13.73% of all taxi travel carbon emissions; and evening peak commuting carbon emissions reached 732.2 kg per hour, accounting for 4% of all taxi travel carbon emissions; (2) At the grid level, the spatial distribution of commuting carbon emissions in Hangzhou shows a single central peak that decays in all directions; and (3) The results at the resident community scale show that urban public transport facilities influence resident community commuting carbon emissions. In areas such as at the urban-rural border, resident community commuting carbon emissions show high levels of aggregation, and in the main urban area, resident community commuting carbon emissions show low levels of aggregation. This study not only provides a new method of commuting investigation but also offers constructive suggestions for future carbon emission reduction under Hangzhou’s urban planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.