Riveting is one of the major joining methods used in assembly, and the robotic riveting has been gradually introduced into aircraft industry. In this paper, a method is presented for modeling and simulation of percussive robotic riveting. In percussive riveting, vibration always exists. When an impact force is employed, a forced vibration will be induced. If it resonates with a robot natural frequency, the vibration will cause damage to the robot. The main content of this paper is divided into three parts. Firstly, a robot dynamic model is established to compute the driving torque for each joint. Secondly, vibration responses under impact are analyzed for the percussive riveting process. Thirdly, the effect of riveting on robot vibration is studied over the robot workspace. The purpose of this paper is to discuss the suitable regions for riveting where the robot vibration is very minimal. It is shown that based on the presented method an appropriate trajectory can be planned for robotic riveting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.