Although flowering regulatory mechanisms have been extensively studied in Arabidopsis (Arabidopsis thaliana), those in other species have not been well elucidated. Here, we investigated the role of OsMADS51, a type I MADS-box gene in the short-day (SD) promotion pathway in rice (Oryza sativa). In SDs OsMADS51 null mutants flowered 2 weeks later than normal, whereas in long days loss of OsMADS51 had little effect on flowering. Transcript levels of three flowering regulators-Ehd1, OsMADS14, and Hd3a-were decreased in these mutants, whereas those of OsGI and Hd1 were unchanged. Ectopic expression of OsMADS51 caused flowering to occur about 7 d earlier only in SDs. In ectopic expression lines, transcript levels of Ehd1, OsMADS14, and Hd3a were increased, but those of OsGI and Hd1 remained the same. These results indicate that OsMADS51 is a flowering promoter, particularly in SDs, and that this gene functions upstream of Ehd1, OsMADS14, and Hd3a. To further investigate the relationship with other flowering promoters, we generated transgenic plants in which expression of Ehd1 or OsGI was suppressed. In Ehd1 RNA interference plants, OsMADS51 expression was not affected, supporting our conclusion that the MADS-box gene functions upstream of Ehd1. However, in OsGI antisense plants, the OsMADS51 transcript level was reduced. In addition, the circadian expression pattern for this MADS-box gene was similar to that for OsGI. These results demonstrate that OsMADS51 functions downstream of OsGI. In summary, OsMADS51 is a novel flowering promoter that transmits a SD promotion signal from OsGI to Ehd1.
In much of the tropics and subtropics, rice (Oryza sativa L.) is grown under long days (LDs). Therefore, LD must play a major role in inducing flowering signal in rice. However, little is known on LD-dependent flowering signal in the species. We previously reported that OsMADS50, which is highly homologous to Arabidopsis SOC1, functions as a positive regulator for flowering. However, its detailed photoperiodic mechanism was not yet elucidated. Here, we report the functional analysis of OsMADS50 and its closely related gene OsMADS56. Knock-out of OsMADS50 caused a late-flowering phenotype only under LD conditions. Overexpression of OsMADS56 (56OX) also resulted in delayed flowering under LD. In the osmads50 mutants and 56OX transgenic plants, transcripts of Ehd1, Hd3a and RFT1 were reduced, although that of OsLFL1 increased. On the other hand, mRNA levels of OsGI, Hd1, OsId1, OsDof12, Ghd7, Hd6 and SE5 were unchanged. These observations imply that OsMADS50 and OsMADS56 function antagonistically through OsLFL1-Ehd1 in regulating LD-dependent flowering. Yeast two-hybrid and co-immunoprecipitation analyses indicated an interaction between those two proteins as well as their formation of homodimers. These results suggest that OsMADS50 and OsMADS56 may form a complex that regulates downstream target genes.
SUMMARYSeed shattering is an important trait that influences grain yield. A major controlling quantitative trait locus in rice is qSH1. Although the degree of shattering is correlated with the level of expression of qSH1, some qSH1-defective cultivars display moderate shattering while others show a non-shattering phenotype. Os05 g38120 (SH5) on chromosome 5 is highly homologous to qSH1. Although we detected SH5 transcripts in various organs, this gene was highly expressed at the abscission zone (AZ) in the pedicels. When expression of this gene was suppressed in easy-shattering 'Kasalath', development of the AZ was reduced and thereby so was seed loss. By contrast, the extent of shattering, as well as AZ development, was greatly enhanced in moderate-shattering 'Dongjin' rice when SH5 was overexpressed. Likewise, overexpression of SH5 in the non-shattering 'Ilpum' led to an increase in seed shattering because lignin levels were decreased in the basal region of spikelets in the absence of development of an AZ. We also determined that two shattering-related genes, SHAT1 and Sh4, which are necessary for proper formation of an AZ, were induced by SH5. Based on these observations, we propose that SH5 modulates seed shattering by enhancing AZ development and inhibiting lignin biosynthesis.
SummaryIndeterminate 1 (Id1), a classical flowering gene first reported in 1946, is one of the earliest genes whose expression in leaf tissues affects the floral transition in the shoot meristem. How Id1 is integrated into the flowering process is largely unknown. In this study, we examined the genetic action of the rice (Oryza sativa) ortholog OsId1. In rice, OsId1 is preferentially expressed in young leaves, but the overall expression pattern is broader than that in maize (Zea mays). OsId1 is able to activate transcription in yeast. RNAi mutants show a delay in flowering under both short-day (SD) and long-day (LD) conditions. OsId1 regulates the expression of Ehd1 (Early heading date 1) and its downstream genes, including Hd3a (a rice ortholog of FT) and RFT1 (Rice Flowering Locus T1), under both SD and LD conditions. In rice, the expression of Ehd1 is also controlled by the photoperiodic flowering genes OsGI (a rice ortholog of GI) and OsMADS51. However, the expression of OsId1 is independent of OsGI, OsMADS51, and OsMADS50 (a rice SOC1 ortholog). This study demonstrates that the activation of Ehd1 by OsId1 is required for the promotion of flowering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.