The pandemic outbreak of a new coronavirus (CoV), SARS-CoV-2, has captured the world's attention, demonstrating that CoVs represent a continuous global threat. As this is a highly contagious virus, it is imperative to understand RNA-dependent-RNApolymerase (RdRp), the key component in virus replication. Although the SARS-CoV-2 genome shares 80% sequence identity with severe acute respiratory syndrome SARS-CoV, their RdRps and nucleotidyl-transferases (NiRAN) share 98.1% and 93.2% identity, respectively. Sequence alignment of six coronaviruses demonstrated higher identity among their RdRps (60.9%−98.1%) and lower identity among their Spike proteins (27%−77%). Thus, a 3D structural model of RdRp, NiRAN, non-structural protein 7 (nsp7), and nsp8 of SARS-CoV-2 was generated by modeling starting from the SARS counterpart structures. Furthermore, we demonstrate the binding poses of three viral RdRp inhibitors (Galidesivir, Favipiravir, and Penciclovir), which were recently reported to have clinical significance for SARS-CoV-2. The network of interactions established by these drug molecules affirms their efficacy to inhibit viral RNA replication and provides an insight into their structure-based rational optimization for SARS-CoV-2 inhibition.
The objective of this study was to investigate the responses of meat ducks of 15 to 35 d of age to free gossypol (FG) from cottonseed meal (CSM) and to establish the maximum limits of dietary FG concentration based on growth performance, blood parameters, and tissue residues of gossypol. Nine hundred 15-d-old ducks were randomly allocated to 5 treatments with 10 cages/treatment and 18 ducks/cage on the basis of BW. Five isonitrogenous and isocaloric experimental diets were formulated on a digestible amino acid basis to produce diets in which 0% (without FG), 25% (36 mg FG/kg), 50% (75 mg FG/kg), 75% (111 mg FG/kg), and 100% (153 mg FG/kg) of protein from soybean meal were replaced by that from CSM. Increasing dietary FG content, BW, and ADG decreased (linearly, P < 0.05, except for ADG of days 29 to 35), and F/G linearly increased (P < 0.05). At 35 d, blood hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration linearly decreased (P < 0.05), while serum total protein, albumin, and globulin content linearly decreased (P < 0.05), and the residue of gossypol in liver, kidney, heart, breast, and leg muscle linearly increased (P < 0.001) with increases in dietary FG concentration. Ducks fed 36 mg FG/kg (5.83% CSM of diet) diet had a normal histological structure of liver, and muscle (breast and leg) had no residue of gossypol. The maximum limit of dietary FG concentration was estimated to range from a low of 36 mg/kg to maximize serum globulin concentration to a high of 124 mg/kg to minimize feed intake for 22 to 28d on the basis of a quadratic broken-line model.
The nonmotile, spherical, picoplanktonic (2‐μm‐sized) pelagophyte Aureococcus anophagefferens has caused numerous harmful blooms (“brown tides”) across global marine ecosystems. Blooms have developed along the east coast of the USA since 1985, a limited number of times in South Africa around 1997, and frequently in China since 2009. As a consequence, the harmful blooms have caused massive losses in aquaculture and coastal ecosystems, particularly mortalities in cultured shellfish. Therefore, whether A. anophagefferens was recently introduced to China via natural/artificial transport of resting stage cells or has been an indigenous species has become a question of profound ecological significance and broad interest, which motivated our extensive investigation on the geographic and historical presence of this species in the seas of China. We applied a combined approach of extensive PCR‐based detection and sequencing, germination experiments and monoclonal antibody staining of germlings to samples of surface sediment and sediment core (dated via combined isotopic measurements) collected from all four seas of China, and searched the supplementary data set of a recent Science publication. We discovered that A. anophagefferens does have a resting stage in the sediment, but it also has a wide geographic distribution both in China (covering a range of ~30° in latitude, ~15.7° in longitude and 2.5–3,456 m in water depth; temperate to tropical and coastal to open oceans) and in almost all oceans of the world and a historical presence of >1,500 years in the Bohai Sea, China. The work revealed that A. anophagefferens is not a recently introduced, but an indigenous species in China and has in fact a globally cosmopolitan distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.