Chemodynamic therapy (CDT) utilizes iron-initiated Fenton chemistry to destroy tumor cells by converting endogenous H O into the highly toxic hydroxyl radical ( OH). There is a paucity of Fenton-like metal-based CDT agents. Intracellular glutathione (GSH) with OH scavenging ability greatly reduces CDT efficacy. A self-reinforcing CDT nanoagent based on MnO is reported that has both Fenton-like Mn delivery and GSH depletion properties. In the presence of HCO , which is abundant in the physiological medium, Mn exerts Fenton-like activity to generate OH from H O . Upon uptake of MnO -coated mesoporous silica nanoparticles (MS@MnO NPs) by cancer cells, the MnO shell undergoes a redox reaction with GSH to form glutathione disulfide and Mn , resulting in GSH depletion-enhanced CDT. This, together with the GSH-activated MRI contrast effect and dissociation of MnO , allows MS@MnO NPs to achieve MRI-monitored chemo-chemodynamic combination therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.