Objective To investigate the risk factors of medication nonadherence in patients with type 2 diabetes mellitus (T2DM) and to establish a risk nomogram model. Methods This retrospective study enrolled patients with T2DM, which were divided into two groups based on their scores on the Morisky Medication Adherence scale. Univariate and multivariate logistic regression analyses were used to screen for independent risk factors for medication nonadherence. A risk model was then established using a nomogram. The accuracy of the prediction model was evaluated using centrality measurement index and receiver operating characteristic curves. Internal verification was evaluated using bootstrapping validation. Results A total of 338 patients with T2DM who included in the analysis. Logistic regression analysis showed that the educational level, monthly per capita income, drug affordability, the number of drugs used, daily doses of drugs and the time spent taking medicine were all independent risk factors for medication nonadherence. Based on these six risk factors, a nomogram model was established to predict the risk of medication nonadherence, which was shown to be very reliable. Bootstrapping validated the nonadherence nomogram model for patients with T2DM. Conclusions This nomogram model could be used to evaluate the risks of drug nonadherence in patients with T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.