Background Access to rapid diagnosis is key to the control and management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory RT-PCR testing is the current standard of care but usually requires a centralised laboratory and significant infrastructure. We describe our diagnostic accuracy assessment of a novel, rapid point-of-care real time RT-PCR CovidNudge test, which requires no laboratory handling or sample pre-processing. Methods Between April and May, 2020, we obtained two nasopharyngeal swab samples from individuals in three hospitals in London and Oxford (UK). Samples were collected from three groups: self-referred health-care workers with suspected COVID-19; patients attending emergency departments with suspected COVID-19; and hospital inpatient admissions with or without suspected COVID-19. For the CovidNudge test, nasopharyngeal swabs were inserted directly into a cartridge which contains all reagents and components required for RT-PCR reactions, including multiple technical replicates of seven SARS-CoV-2 gene targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and human ribonuclease P (RNaseP) as sample adequacy control. Swab samples were tested in parallel using the CovidNudge platform, and with standard laboratory RT-PCR using swabs in viral transport medium for processing in a central laboratory. The primary analysis was to compare the sensitivity and specificity of the point-of-care CovidNudge test with laboratory-based testing. Findings We obtained 386 paired samples: 280 (73%) from self-referred health-care workers, 15 (4%) from patients in the emergency department, and 91 (23%) hospital inpatient admissions. Of the 386 paired samples, 67 tested positive on the CovidNudge point-of-care platform and 71 with standard laboratory RT-PCR. The overall sensitivity of the point-of-care test compared with laboratory-based testing was 94% (95% CI 86-98) with an overall specificity of 100% (99-100). The sensitivity of the test varied by group (self-referred healthcare workers 93% [95% CI 84-98]; patients in the emergency department 100% [48-100]; and hospital inpatient admissions 100% [29-100]). Specificity was consistent between groups (self-referred health-care workers 100% [95% CI 98-100%]; patients in the emergency department 100% [69-100]; and hospital inpatient admissions 100% [96-100]). Point of care testing performance was similar during a period of high background prevalence of laboratory positive tests (25% [95% 20-31] in April, 2020) and low prevalence (3% [95% 1-9] in inpatient screening). Amplification of viral nucleocapsid (n1, n2, and n3) and envelope protein gene (e-gene) were most sensitive for detection of spiked SARS-CoV-2 RNA. Interpretation The CovidNudge platform was a sensitive, specific, and rapid point of care test for the presence of SARS-CoV-2 without laboratory handling or sample pre-processing. The device, which has been implemented in UK hospitals since May, 2020, could enable rapid decisions for clinical care and testing programmes.
Neuromodulation has wide ranging potential applications in replacing impaired neural function (prosthetics), as a novel form of medical treatment (therapy), and as a tool for investigating neurons and neural function (research). Voltage and current controlled electrical neural stimulation (ENS) are methods that have already been widely applied in both neuroscience and clinical practice for neuroprosthetics. However, there are numerous alternative methods of stimulating or inhibiting neurons. This paper reviews the state-of-the-art in ENS as well as alternative neuromodulation techniques—presenting the operational concepts, technical implementation and limitations—in order to inform system design choices.
This version is available at https://strathprints.strath.ac.uk/61917/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. The Faraday effect due to magnetic-field-induced change in the optical properties takes place in a vast variety of systems from a single atomic layer of graphenes to huge galaxies. To date, it plays a pivot role in many applications such as the manipulation of light, and the probing of magnetic fields and material's properties. Basically this effect causes a polarization rotation of light during its propagation along the magnetic field in a medium. Here, we report an extreme case of the Faraday effect that a linearly polarized ultrashort laser pulse splits in time into two circularly polarized pulses of opposite handedness during its propagation in a highly magnetized plasma. This offers a new degree of freedom to manipulate ultrashort and ultrahigh power laser pulses. Together with technologies of ultra-strong magnetic fields, it may pave the way for novel optical devices, such as magnetized plasma polarizers. Besides, it may offer a powerful means to measure strong magnetic fields in laser-produced plasmas.
A third-order correlation system has been developed, which enables the contrast ratio of high-intensity ultra-short laser Dulses to be measured on a single shot. with a dynamic range of better than loa.
Modern microtechnology is enabling the channel count of neural recording integrated circuits to scale exponentially. However, the raw data bandwidth of these systems is increasing proportionately, presenting major challenges in terms of power consumption and data transmission (especially for wireless systems). This paper presents a system that exploits the sparse nature of neural signals to address these challenges and provides a reconfigurable low-bandwidth event-driven output. Specifically, we present a novel 64-channel low-noise (2.1 V), low-power (23 W per analogue channel) neural recording system-on-chip (SoC). This features individually configurable channels, 10-bit analogue-to-digital conversion, digital filtering, spike detection, and an event-driven output. Each channel's gain, bandwidth, and sampling rate settings can be independently configured to extract local field potentials at a low data-rate and/or action potentials (APs) at a higher data rate. The sampled data are streamed through an SRAM buffer that supports additional on-chip processing such as digital filtering and spike detection. Real-time spike detection can achieve 2 orders of magnitude data reduction, by using a dual polarity simple threshold to enable an event driven output for neural spikes (16-sample window). The SoC additionally features a latency-encoded asynchronous output that is critical if used as part of a closed-loop system. This has been specifically developed to complement a separate on-node spike sorting coprocessor to provide a real-time (low latency) output. The system has been implemented in a commercially available 0.35-m CMOS technology occupying a silicon area of 19.1 mm (0.3 mm gross per channel), demonstrating a low-power and efficient architecture that could be further optimized by aggressive technology and supply voltage scaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.