Pyramidal neurons in the deep layers of the cerebral cortex can be classified into two major classes: callosal projection neurons and long-range subcortical neurons. We and others have shown that a gene expressed specifically by subcortical projection neurons, Fezf2, is required for the formation of axonal projections to the spinal cord, tectum, and pons. Here, we report that Fezf2 regulates a decision between subcortical vs. callosal projection neuron fates. callosal ͉ cell fate ͉ zinc finger transcription factor ͉ corticospinal tract ͉ axon guidance
The Olf-1/EBF helix-loop-helix (HLH) transcription factor has been implicated in olfactory gene regulation and in B-cell development. Using homology screening methods, we identified two additional Olf-1/EBF-like cDNAs from a mouse embryonic cDNA library. The Olf-1/EBF-like (O/E) proteins O/E-1, O/E-2, and O/E-3 define a family of transcription factors that share structural similarities and biochemical activities. Although these O/E genes are expressed within olfactory epithelium in an identical pattern, they exhibit different patterns of expression in the developing nervous system. Although O/E-1 mRNA is present in several tissues in addition to olfactory neurons and developing B-cells, O/E-2 and O/E-3 are expressed at high levels only in olfactory tissue. In O/E-1 knock-out animals, the presence of two additional O/E family members in olfactory neurons may provide redundancy and allow normal olfactory neurodevelopment. Further, the identification of the O/E family of HLH transcription factors and their embryonic expression patterns suggest that the O/E proteins may have a more general function in neuronal development.
The mammalian Olf1/EBF (O/E) family of repeated helix-loop-helix (rHLH)transcription factors has been implicated in olfactory system gene regulation,nervous system development and B-cell differentiation. Ebf(O/E1) mutant animals showed defects in B-cell lineage and brain regions where it is the only O/E family member expressed, but the olfactory epithelium appeared unaffected and olfactory marker expression was grossly normal in these animals. In order to further study the mammalian O/E proteins,we disrupted O/E2 and O/E3 genes in mouse and placed tau-lacZ and tau-GFP reporter genes under the control of the respective endogenous O/E promoters. Mice mutant for each of these genes display reduced viability and other gene-specific phenotypes. Interestingly, both O/E2 and O/E3 knockout mice as well as O/E2/O/E3 double heterozygous animals share a common phenotype:olfactory neurons (ORN) fail to project to dorsal olfactory bulb. We suggest that a decreased dose of O/E protein may alter expression of O/E target genes and underlie the ORN projection defect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.