The double pressures of resources and environment have brought the global power industry into the era of Smart Grid. In order to better promote the development of Demand Response of Smart Grid and to offer new regulation resources for the safe and stable operation of electric power system, OpenADR, the Open Automated Demand Response Communications Specification, has been discussed in detail, which aims at the problems of energy efficiency and the contradiction between power supply and demand. And a design scheme of Auto-DR system which introduces in detail the system architecture and the communications architecture based on OpenADR was proposed to realize the two-way communications between Utilities and end-users, and the problems such as the peak, the gap between supply and demand and the electricity structure management would be consequently solved. This scheme has a certain reference value to the Demand Side Management under the framework of Smart Grid.
Subscript text Subscript textA series of Au/CeO2 catalysts were synthesized and evaluated for formaldehyde catalytic combustion oxidation. In Au/CeO2 catalysts, CeO2 supports with different structure,Au/Macroporous-CeO2 is found to be superior catalyst for formaldehyde catalytic oxidation. According to the analysis of transmission electron microscopy (TEM), the pore size of Macroporous-CeO2 is broader than that of mesoporous SBA-CeO2 support, which could make the active species gold adequately disperse as small nanoparticles, furthermore, it is most noticed that macroporous CeO2 support is benefit to mass transfer comparing with mesoporous SBA-CeO2 and ordinary power CeO2.
Energy efficiency detection system plays a important role in energy conservation service market, which is applied in lots of enterprises. Mobile detection system can save manpower and financial resources especially for energy conservation service agencies and energy efficiency assessment institutions, which consists of the portable devices, self-organizing communication network, reliable data collection ability, strong data analysis and display tools. The physical architecture, function architecture of the system was designed and key technologies about the system were also specially studied. The test method about the system was designed, which is used to guide the technicians in the field. The thesis results supply a practical measure for the work of the above mentioned related agencies and institutions.
The continuous advance of the policy about ‘Energy saving and emission reduction’, along with the continuous development of information technology, control technology, which bring profitable conditions for the monitoring and control over the building (here mainly refers to the large building of government, commercial or industrial user). In particular, a interaction and monitoring system is proposed, which is used to monitor the parameters about energy consumption of energy consumption system or equipment inside the building, in addition the information about the running of the energy consumption system or equipment. At the same time, the relevant units of the energy consumption system or equipment is controlled by the interaction and monitoring system. The interaction and monitoring system for energy saving in building consists of the node for energy saving and monitoring, wireless sensor network (hereinafter referred to as WSN), the platform for energy saving and monitoring, making up the three-layer structure of the interaction and monitoring system inside the building. The node for energy saving and monitoring is a wireless sensor actually, which plays the role as collecting data and controlling. Along with the other nodes for energy saving and monitoring, as well as the nodes acting as repeater, router, coordinator, all nodes inside the building compose the WSN. The node acting as the repeater is of great significance for the transmission of data, especially when some nodes for energy saving and monitoring is located in underground building and some other places where the signal of WSN is blocked, as well as the places far away from the neighbor nodes of WSN. The coordinator is located on the platform for energy saving and monitoring, meanwhile the function of gateway is integrated in the node acting as the coordinator. This node converge the data of the WSN, and transfers the data to the server of the platform for energy saving and monitoring.
Power electronic devices always consume a lot of energy, and this energy is then converted into heat, so that the device temperature rises. It will not only affect the device performance in full cycling, but also may result in damage, if the problem of heat dissipation can not be solved. In this paper, we propose an energy cycle approach that can provide a full utilization of the reused energy from the expansion tank to distributed pump. The Power distribution analysis of the controlling cabinet is presented together with the component in power cabinet. With the capacity of power electronic devices and power levels increasing rapidly, the thermal performance of the cooling system can be improved and higher requirements can be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.