Automated medical image analysis is an emerging field of research that identifies the disease with the help of imaging technology. Diabetic retinopathy (DR) is a retinal disease that is diagnosed in diabetic patients. Deep neural network (DNN) is widely used to classify diabetic retinopathy from fundus images collected from suspected persons. The proposed DR classification system achieves a symmetrically optimized solution through the combination of a Gaussian mixture model (GMM), visual geometry group network (VGGNet), singular value decomposition (SVD) and principle component analysis (PCA), and softmax, for region segmentation, high dimensional feature extraction, feature selection and fundus image classification, respectively. The experiments were performed using a standard KAGGLE dataset containing 35,126 images. The proposed VGG-19 DNN based DR model outperformed the AlexNet and spatial invariant feature transform (SIFT) in terms of classification accuracy and computational time. Utilization of PCA and SVD feature selection with fully connected (FC) layers demonstrated the classification accuracies of 92.21%, 98.34%, 97.96%, and 98.13% for FC7-PCA, FC7-SVD, FC8-PCA, and FC8-SVD, respectively.
In the field of ophthalmology, diabetic retinopathy (DR) is a major cause of blindness. DR is based on retinal lesions including exudate. Exudates have been found to be one of the signs and serious DR anomalies, so the proper detection of these lesions and the treatment should be done immediately to prevent loss of vision. In this paper, pretrained convolutional neural network- (CNN-) based framework has been proposed for the detection of exudate. Recently, deep CNNs were individually applied to solve the specific problems. But, pretrained CNN models with transfer learning can utilize the previous knowledge to solve the other related problems. In the proposed approach, initially data preprocessing is performed for standardization of exudate patches. Furthermore, region of interest (ROI) localization is used to localize the features of exudates, and then transfer learning is performed for feature extraction using pretrained CNN models (Inception-v3, Residual Network-50, and Visual Geometry Group Network-19). Moreover, the fused features from fully connected (FC) layers are fed into the softmax classifier for exudate classification. The performance of proposed framework has been analyzed using two well-known publicly available databases such as e-Ophtha and DIARETDB1. The experimental results demonstrate that the proposed pretrained CNN-based framework outperforms the existing techniques for the detection of exudates.
Diabetic retinopathy (DR) is a fast-spreading disease across the globe, which is caused by diabetes. The DR may lead the diabetic patients to complete vision loss. In this scenario, early identification of DR is more essential to recover the eyesight and provide help for timely treatment. The detection of DR can be manually performed by ophthalmologists and can also be done by an automated system. In the manual system, analysis and explanation of retinal fundus images need ophthalmologists, which is a timeconsuming and very expensive task, but in the automated system, artificial intelligence is used to perform an imperative role in the area of ophthalmology and specifically in the early detection of diabetic retinopathy over the traditional detection approaches. Recently, numerous advanced studies related to the identification of DR have been reported. This paper presents a detailed review of the detection of DR with three major aspects; retinal datasets, DR detection methods, and performance evaluation metrics. Furthermore, this study also covers the author's observations and provides future directions in the field of diabetic retinopathy to overcome the research challenges for the research community. INDEX TERMS Artificial intelligence, deep learning, diabetic retinopathy, fundus images, machine learning, ophthalmology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.