BackgroundBacterial small regulatory RNAs (sRNAs) play important roles in sensing environment changes through sRNA-target mRNA interactions. However, the current strategy for detecting sRNA-mRNA interactions usually combines bioinformatics prediction and experimental verification, which is hampered by low prediction accuracy and low-throughput. Additionally, among the 4736 sequenced bacterial genomes, only about 2164 sRNAs from 319 strains have been described. Furthermore, target mRNAs of only 157 sRNAs have been uncovered. Obviously, highly efficient methods were required to detect sRNA-mRNA interactions in the sequenced genomes. This study aimed to apply a modified CLASH (cross-linking, ligation and sequencing hybrids) method to detect RNA-RNA interactions in E. coli, a model bacterial organism.ResultsStatistically significant interactions were detected in 29 transcript pairs. To the best of our knowledge, 24 pairs were reported for the first time and were novel RNA interactions, including tRNA-tRNA, tRNA-ncRNA (non-coding RNA), tRNA-rRNA, rRNA-mRNA, rRNA-ncRNA, rRNA-rRNA, rRNA-IGT (intergenic transcript), and tRNA-IGT interactions.ConclusionsDiscovery of novel RNA-RNA interactions in the present study demonstrates that RNA-RNA interactions might be far more complicated than ever expected. New methods may be required to help discover more novel RNA-RNA interactions. The present work describes a high-throughput protocol not only for discovering new RNA interactions, but also directly obtaining base-pairing sequences, which should be useful in assessing RNA structure and interactions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3725-3) contains supplementary material, which is available to authorized users.
IntroductionNeurofibromatosis type 1 (NF1) is a common Mendelian multi-system disorder that is characterized by café-au-lait spots (CLS), axillary freckling, optic glioma and plexiform neurofibroma. Various mutations of the NF1 gene are widely accepted to be the main cause of this disease, while whether there are still certain other modifier genes that could influence the phenotypes of NF1 is our concern.Patients and MethodsOne proband and his father are involved, who are characterized by plexiform neurofibroma and cutaneous neurofibroma, respectively. Enhanced Computed tomography (CT) and Positron emission tomography-CT (PET-CT) were taken to collect the radiographic data, and the specimens of this neurofibroma as well as the blood samples from the father and son were sent for panel mutation screening of 295 tumor-related genes based on next-generation screening. Furthermore, the NF1 gene mutations were referred with Canis lupus familiaris, Rattus norvegicus, Gallus gallus, Danio rerio, and Drosophila melanogaster NF1 sequencing for evolutionary conservativeness and then analyzed in Condel databases for pathogenicity prediction.ResultsThe radiography indicated that the benign plexiform neurofibroma only occurred in the son. Also, TP53, FANCA, BCL6, PIK3C2G, RNF43, FGFR4, FLT3, ERBB2, PAK7, NSD1, MEN1 and TSC1 were uniquely found mutated in the son, which could be candidates as new modifier genes; besides, RNF43 was also mutated in public neurofibroma seuquencing data. By KEGG pathway annotation, phosphoinositide-3-kinase-Akt pathway was altered in both the public plexiform neurofibroma sample and in our proband patient.ConclusionThis study reexamined the background germline mutations and suggested their potential value as modifier genes that may influence the phenotype heterogenity.
A large human natural single-chain fragment variable (scFv) phage library was constructed based on Cre-LoxP recombination, and used to successfully identify antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9). The library was derived from 400 blood samples, 30 bone marrow samples, and 10 cord blood samples from healthy donors. Lymphocytes were isolated from each sample and cDNA was synthesized using reverse transcription-quantitative PCR. Two-step overlap PCR was then used for scFv synthesis using a LoxP peptide as the linker. The scFv gene was inserted into the phagemid vector pDF by enzymatic digestion and ligation, and then transformed into Escherichia coli ( E. coli ) SS320 to establish a primary antibody library in the form of scFvs. A primary antibody library consisting of 5×10 7 peripheral blood and umbilical cord blood sources, as well as a primary antibody library of 5×10 7 bone marrow samples were obtained. By optimizing the recombination conditions, the primary phage library was used to infect E. coli BS1365 strain (which expresses the Cre enzyme), and a human scFv recombinant library with a size of 1×10 11 was obtained through Cre-LoxP enzyme-mediated heavy and light chain replacement and recombination. This constructed recombinant library was employed to screen for antibodies against recombinant PCSK9. After four rounds of selection, a fully human antibody (3D2) was identified with a binding affinity of 1.96±1.56ⅹ10 −10 M towards PCSK9. In vitro , the PCSK9/low-density lipoprotein receptor (LDLR) pathway of Hep-G2 cells was inhibited by 3D2 treatment, thereby increasing LDL uptake in these cells. In addition, combination treatment with 3D2 and statin was more effective at increasing LDLR levels than treatment with 3D2 or statin alone. Furthermore, 3D2 resulted in a 3-fold increase in hepatic LDLR levels, and lowered total serum cholesterol by up to 61.5% in vivo . Taken together, these results suggest that the constructed human Cre-LoxP scFv phage display library can be used to screen fully human scFv, and that 3D2 may serve as a candidate hypolipidemic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.