We conducted a comprehensive analysis of a manually curated human signaling network containing 1634 nodes and 5089 signaling regulatory relations by integrating cancer-associated genetically and epigenetically altered genes. We find that cancer mutated genes are enriched in positive signaling regulatory loops, whereas the cancer-associated methylated genes are enriched in negative signaling regulatory loops. We further characterized an overall picture of the cancersignaling architectural and functional organization. From the network, we extracted an oncogenesignaling map, which contains 326 nodes, 892 links and the interconnections of mutated and methylated genes. The map can be decomposed into 12 topological regions or oncogene-signaling blocks, including a few 'oncogene-signaling-dependent blocks' in which frequently used oncogenesignaling events are enriched. One such block, in which the genes are highly mutated and methylated, appears in most tumors and thus plays a central role in cancer signaling. Functional collaborations between two oncogene-signaling-dependent blocks occur in most tumors, although breast and lung tumors exhibit more complex collaborative patterns between multiple blocks than other cancer types. Benchmarking two data sets derived from systematic screening of mutations in tumors further reinforced our findings that, although the mutations are tremendously diverse and complex at the gene level, clear patterns of oncogene-signaling collaborations emerge recurrently at the network level. Finally, the mutated genes in the network could be used to discover novel cancerassociated genes and biomarkers.
Methane is an essential component of the global carbon cycle and one of the most powerful greenhouse gases, yet it is also a promising alternative source of carbon for the biological production of value-added chemicals. Aerobic methane-consuming bacteria (methanotrophs) represent a potential biological platform for methane-based biocatalysis. Here we use a multipronged systems-level approach to reassess the metabolic functions for methane utilization in a promising bacterial biocatalyst. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under oxygen limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.