Patients with medically refractory epilepsy (MRE) are indicated for vagus nerve stimulation (VNS) placement. Anaesthesia for VNS placement is extremely challenging and requires several considerations. We present a man in his 20s with MRE who successfully underwent VNS placement. We review the mechanism of action of VNS, anaesthetic challenges and measures to prevent seizures.
To ensure the direct delivery of therapeutic hypothermia at a selected constant temperature to the injured brain, a newly innovated direct brain cooling system was constructed. The practicality, effectiveness, and safety of this system were clinically tested in our initial series of 14 patients with severe head injuries. The patients were randomized into two groups: direct brain cooling at 32°C and the control group. All of them received intracranial pressure (ICP), focal brain oxygenation, brain temperature, and direct cortical brainwave monitoring. The direct brain cooling group did better in the Extended Glasgow Outcome Scale at the time of discharge and at 6 months after trauma. This could be owing to a trend in the monitored parameters; reduction in ICP, increment in cerebral perfusion pressure, optimal brain redox regulation, near-normal brain temperature, and lessening of epileptic-like brainwave activities are likely the reasons for better outcomes in the cooling group. Finally, this study depicts interesting cortical brainwaves during a transition time from being alive to dead. It is believed that the demonstrated cortical brainwaves follow the principles of quantum physics.
Polymyxin B (PB) is a polypeptide bactericidal antibiotic that is commonly used for extensively drug-resistant (XDR) microorganisms such asAcinetobacter baumaniiandKlebsiella pneumoniae. It can be administered intravenously or intrathecally. Common side effects are nephrotoxicity, neurotoxicity, pruritus and skin hyperpigmentation (SH). The latter is an uncommon adverse reaction of intravenously administered PB. We report a rare occurrence of PB-induced SH secondary to intrathecal administration of PB in a child withA. baumaniiXDR ventriculitis. We describe the management of him and a brief review of PB.
The debilitating effect of traumatic brain injury (TBI) extends years after the initial injury and hampers the recovery process and quality of life. In this study, we explore the functional reorganization of the default mode network (DMN) of those affected with non-severe TBI. Traumatic brain injury (TBI) is a wide-spectrum disease that has heterogeneous effects on its victims and impacts everyday functioning. The functional disruption of the default mode network (DMN) after TBI has been established, but its link to causal effective connectivity remains to be explored. This study investigated the differences in the DMN between healthy participants and mild and moderate TBI, in terms of functional and effective connectivity using resting-state functional magnetic resonance imaging (fMRI). Nineteen non-severe TBI (mean age 30.84 ± 14.56) and twenty-two healthy (HC; mean age 27.23 ± 6.32) participants were recruited for this study. Resting-state fMRI data were obtained at the subacute phase (mean days 40.63 ± 10.14) and analyzed for functional activation and connectivity, independent component analysis, and effective connectivity within and between the DMN. Neuropsychological tests were also performed to assess the cognitive and memory domains. Compared to the HC, the TBI group exhibited lower activation in the thalamus, as well as significant functional hypoconnectivity between DMN and LN. Within the DMN nodes, decreased activations were detected in the left inferior parietal lobule, precuneus, and right superior frontal gyrus. Altered effective connectivities were also observed in the TBI group and were linked to the diminished activation in the left parietal region and precuneus. With regard to intra-DMN connectivity within the TBI group, positive correlations were found in verbal and visual memory with the language network, while a negative correlation was found in the cognitive domain with the visual network. Our results suggested that aberrant activities and functional connectivities within the DMN and with other RSNs were accompanied by the altered effective connectivities in the TBI group. These alterations were associated with impaired cognitive and memory domains in the TBI group, in particular within the language domain. These findings may provide insight for future TBI observational and interventional research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.