This paper studies the X-ray spectra produced by the interaction of highly charged ions of Arq+(q=16,17,18) with metallic surface of Be, Al, Ni, Mo and Au respectively. The experimental results show that the Kα X-ray emerges from under the surface of solid in the interaction of ions with targets. The multi-electron excitation occurred in the process neutralization of the Ar16+ in electronic configuration of 1s2 in metallic surfaces, which produces vacancy in the K shell. Electron from high n state transition to K vacancy gives off X-ray. We find that there is no obvious relation between the shape of X-ray spectra and the different targets. The X-ray yield of incident ions are associated with initial electronic configuration. The X-ray yield of target is related to the kinetic energy of the incidentions.
The spectrum of highly ionized titanium was studied by means of the beam-foil technique.Titanium ions were provided by the HI-13 tandem accelerator at China Institute of Atomic Energy.The experimental results are compared with those of laser-produced plasmas. Numerous lines attributed to Ti ⅩⅥ to ⅩⅧ ransitions have been identified,and three of them were newly measured, which were attributed to 2s2p2 4P3/2—2p3 2D3/2, 2s2p2 1S0—2sp3 1P1 and 4p 1P0—5d 1P1 transitions.
It has been found that the transmission rate of the electrons through insulating capillaries as a function of time/incident charge is not the same as that of the ions. The question arises that by using the electrons, if the negative charge patches can be formed to facilitate the transmission of the following electrons, thereby substantiating that the so-called guiding effect works also for electrons. This study aims to observe the time evolutions of the transmission of electrons through a straight glass tube and a tapered glass capillary. This will reveal the details of how and (or) if the negative charge patches can be formed when the electrons transport through them. In this work, a set of MCP/phosphor two-dimensional detection system based on Labview platform is developed to obtain the time evolution of the angular distribution of the transmitted electrons. The pulsed electron beams are obtained to test our detection system. The time evolution of the angular profile of 1.5 keV electrons transmitting through the glass tube/capillary is observed. The transmitted electrons are observed on the detector for a very short time and disappear for a time and then appear again for both the glass tube and tapered glass capillary, leading to an oscillation. The positive charge patches are formed in the insulating glass tube and tapered glass capillary since the secondary electron emission coefficient for the incident energy is larger than 1. It is due to the fact that fast discharge of the deposited charge leads to the increase of the transmission rate, while the fast blocking of the incident electrons due to the deposited positive charge leads to the decrease of the transmission rate. The geometrical configuration of the taper glass capillary tends to make the secondary electrons deposited at the exit part to form the negative patches that facilitate the transmission of electrons. This suggests that if the stable transmission needs to be reached for producing the electron micro-beam by using tapered glass capillaries, the steps must be taken to have the proper grounding and shielding of the glass capillaries and tubes. Our results show a difference in transmission through the insulating capillary between electrons and highly charged ions.
The experiments were performed at HI-13 tandem accelerator at the Chinese Institute of Atomic Energy (CIAE), in which the L-shell X-ray relative production cross section was measured for solid targets Au bombarded by 20—50 MeV O5+ions. The ratios of Au L-subshell production cross sections σ(Lβ)/σ(Lα),σ(Lγ)/σ(Lα),σ(Ll)/σ(Lα) have been calculated according to the experimental data. The results are compared with the predictions of the ECPSSR theory. Reasonable agreement between theory and experiment was obtained.
The 10—20qkeV Ar16+ and Ar17+ ions produced by SECRAL enter on metallic surface of Zr. In this interaction,the multi-electron excitation possibly occurred in the neutralization of the highly charged Ar16+ ions,which produced vacancy in the K shell. Electron of the high n state de-excited to K vacancy gives off X-ray. The experimental results show that X-ray intensities for the Ar hollow atom decrease with increase of incidence energy,and Lβ X-ray intensities of target atom Zr increase with increasing incidence energy. Kα X-ray yield per ion for Ar17+ was five orders of magnitude greater than that for Ar16+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.