Thermal treatment of mercury (Hg)-contaminated soil was studied to investigate the desorption behavior of Hg at different temperatures. The soil samples were collected from two locations with different land uses around the mine and industrial site. The effect of soil properties such as inorganic carbonate minerals and organic matter content on Hg desorption was investigated to understand the thermal desorption process. The effect of soil composition on Hg desorption showed that behavior at 100 °C was similar, but a different behavior could be found at 300 °C. The thermal desorption efficiency at 300 °C is affected by the thermal properties of soils and the Hg desorption capacity of the soils. The Hg from both soil types was removed above 300 °C, and Hg was effectively removed from mine soil due to the partial decomposition of carbonate in the soil composition, while industrial soil showed that desorption would be restrained by Hg organic matter complexes due to organic matter content. Despite a relatively higher concentration of Hg in the mine soil, Hg removal efficiency was greater than that in the industrial soil. Sequential extraction results showed that only the Hg fractions (residual fractions, step 6) in mine soil changed, while the industrial soil was affected by changes in Hg fractions (step 3 to step 6) at 300 °C. Changes in soil pH during thermal desorption are also influenced by heating time and temperature. Therefore, the mechanisms of Hg desorption during thermal treatment were observed by soil properties. The volatilization of Hg in the soil is induced by organic carbon, while soil Hg release is controlled by organic matter complexes.
Thermal treatment of mercury (Hg)-contaminated soil was studied to investigate the desorption behavior of Hg at different temperatures. The soil samples were collected from two locations with different land uses around the mine and industrial site. The effect of soil properties such as inorganic carbonate minerals and organic matter content on Hg desorption was investigated to understand the thermal desorption process. The effect of soil composition on Hg desorption showed that behavior at 100 °C was similar, but different behavior could be found at 300 °C. The thermal desorption efficiency at 300 °C is affected by the thermal properties of soils and the Hg desorption capacity of the soils. The Hg from both soil types was removed above 300 °C, and Hg was effectively removed from mine soil due to the partial decomposition of carbonate in the soil composition, while industrial soil showed that desorption would be restrained by Hg organic matter complexes due to organic matter content. Despite a relatively higher concentration of Hg in the mine soil, Hg removal efficiency was greater than that in the industrial soil. Sequential extraction results showed that only the Hg fractions (residual fractions, F6) in mine soil changed, while the industrial soil was affected by changes in Hg fractions (F3 to F6) at 300 °C. Changes in soil pH during thermal desorption are also influenced by heating time and temperature. Therefore, the mechanisms of Hg desorption during thermal treatment were observed by soil properties. The volatilization of Hg in the soil is induced by organic carbon, while soil Hg release is controlled by organic matter complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.