Adulteration in dairy products has received world-wide attention, and at the same time, near infrared (NIR) spectroscopy has proven to be a promising tool for adulteration detection given its advantages of real-time response and non-destructive analysis. Regardless, the accurate and robust NIR model for adulteration detection is hard to achieve in practice. Convolutional neural network (CNN), as a promising deep learning architecture, is difficult to apply to such chemometrics tasks due to the high risk of overfitting, despite the breakthroughs it has made in other fields. In this paper, the ensemble learning method based on CNN estimators was developed to address the overfitting and random initialization problems of CNN and applied to the determination of two infant formula adulterants, namely hydrolyzed leather protein (HLP) and melamine. Moreover, a probabilistic wavelength selection method based on the attention mechanism was proposed for the purpose of finding the best trade-off between the accuracy and the diversity of the sub-models in ensemble learning. The overall results demonstrate that the proposed method yielded superiority regression performance over the comparison methods for both studied data sets, and determination coefficients (R2) of 0.961 and 0.995 were obtained for the HLP and the melamine data sets, respectively.
The application of near infrared spectroscopy for quantitative analysis of cotton-polyester textile was investigated in the present work. A total of 214 cotton-polyester fabric samples, covering the range from 0% to 100% cotton were measured and analyzed. Partial least squares and least-squares support vector machine models with all variables as input data were established. Furthermore, successive projection algorithm was used to select effective wavelengths and establish the successive projection algorithm-least-squares support vector machine models, with the comparison of two other effective wavelength selection methods: loading weights analysis and regression coefficient analysis. The calibration and validation results show that the successive projection algorithm-least-squares support vector machine model outperformed not only the partial least squares and least-squares support vector machine models with all variables as inputs, but also the leastsquares support vector machine models with loading weights analysis and regression coefficient analysis effective wavelength selection. The root mean squared error of calibration and root mean squared error of prediction values of the successive projection algorithm-least-squares support vector machine regression model with the optimal performance were 0.77% and 1.17%, respectively. The overall results demonstrated that near infrared spectroscopy combined with leastsquares support vector machine and successive projection algorithm could provide a simple, rapid, economical and nondestructive method for determining the composition of cotton-polyester textiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.