Barley remains dated to the dawn of agriculture have been found at several archaeological sites 1,2 . In addition to indications that barley was an important food crop, recent excavations have fuelled speculation that beverages from fermented grains may have motivated early Neolithic hunter-gatherers to erect some of humankind's oldest monuments 3,4 . Moreover, brewing beer may also have played a role in the eastward spread of the crop after its initial domestication in the Fertile Crescent 5,6 . Since 2012, both genetic research and crop improvement in barley have benefited from a partly ordered draft sequence assembly 7 . This community resource has underpinned gene isolation 8,9 and population genomic studies 10 . However, these and other efforts have also revealed limitations of the current draft assembly. The limitations are often direct consequences of two characteristic genomic features: the extreme abundance of repetitive elements, and the severely reduced frequency of meiotic recombination in pericentromeric regions 11 .These factors have limited the contiguity of whole-genome assemblies to kilobase-sized sequences originating from low-copy regions of the genome. Thus, a detailed investigation of the composition of the repetitive fraction of the genome-including expanded gene families-and of the distribution of targets of selection and crop improvement in (genetically defined) pericentromeric regions has been beyond reach.Here we present a map-based reference sequence of the barley genome including the first comprehensively ordered assembly of the pericentromeric regions of a Triticeae genome. The resource highlights a conspicuous distinction between distal and proximal regions of chromosomes that is reflected by the intranuclear chromatin organization. Moreover, chromosomal compartments are differentiated by an exponential gradient of gene density and recombination rate, striking contrasts in the distribution of retrotransposon families, and distinct patterns of genetic diversity.Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlightin...
SignificanceA high-quality genome assembly of Camellia sinensis var. sinensis facilitates genomic, transcriptomic, and metabolomic analyses of the quality traits that make tea one of the world’s most-consumed beverages. The specific gene family members critical for biosynthesis of key tea metabolites, monomeric galloylated catechins and theanine, are indicated and found to have evolved specifically for these functions in the tea plant lineage. Two whole-genome duplications, critical to gene family evolution for these two metabolites, are identified and dated, but are shown to account for less amplification than subsequent paralogous duplications. These studies lay the foundation for future research to understand and utilize the genes that determine tea quality and its diversity within tea germplasm.
Defects are critically important for metal oxides in chemical and physical applications. Compared with the often studied oxygen vacancies, engineering metal vacancies in n-type undoped metal oxides is still a great challenge, and the effect of metal vacancies on the physiochemical properties is seldom reported. Here, using anatase TiO2, the most important and widely studied semiconductor, we demonstrate that metal vacancies (VTi) can be introduced in undoped oxides easily, and the presence of VTi results in many novel physiochemical properties. Anatase Ti0.905O2 was synthesized using solvothermal treatment of tetrabutyl titanate in an ethanol-glycerol mixture and then thermal calcination. Experimental measurements and DFT calculations on cell lattice parameters show the unstoichiometry is caused by the presence of VTi rather than oxygen interstitials. The presence of VTi changes the charge density and valence band edge of TiO2, and an unreported strong EPR signal at g = 1.998 presents under room temperature. Contrary to normal n-type and nonferromagnetic TiO2, Ti-defected TiO2 shows inherent p-type conductivity with high charge mobility, and room-temperature ferromagnetism stronger than Co-doped TiO2 nanocrystalline. Moreover, Ti-defected TiO2 shows much better photocatalytic performance than normal TiO2 in H2 generation (4.4-fold) and organics degradation (7.0-fold for phenol), owing to the more efficient charge separation and transfer in bulk and at semiconductor/electrolyte interface. Metal-defected undoped oxides represent a unique material; this work demonstrates the possibility to fabricate such material in easy and reliable way and thus provides new opportunities for multifunctional materials in chemical and physical devices.
Naturally occurring CD4+CD25+ regulatory T cells (Treg) exert an important role in mediating maternal tolerance to the fetus during pregnancy, and this effect might be regulated via maternal estrogen secretion. Although estrogen concentration in the pharmaceutical range has been shown to drive expansion of CD4+CD25+ Treg cells, little is known about how and through what mechanisms E2 within the physiological concentration range of pregnancy affects this expansion. Using in vivo and in vitro mouse models in these experiments, we observed that E2 at physiological doses not only expanded Treg cell in different tissues but also increased expression of the Foxp3 gene, a hallmark for CD4+CD25+ Treg cell function, and the IL-10 gene as well. Importantly, our results demonstrate that E2, at physiological doses, stimulated the conversion of CD4+CD25- T cells into CD4+CD25+ T cells which exhibited enhanced Foxp3 and IL-10 expression in vitro. Such converted CD4+CD25+ T cells had similar regulatory function as naturally occurring Treg cells, as demonstrated by their ability to suppress naïve T cell proliferation in a mixed lymphocyte reaction. We also found that the estrogen receptor (ER) exist in the CD4+CD25- T cells and the conversion of CD4+CD25- T cells into CD4+CD25+ T cells stimulated by E2 could be inhibited by ICI182,780, a specific inhibitor of ER(s). This supports that E2 may directly act on CD4+CD25- T cells via ER(s). We conclude that E2 is a potential physiological regulatory factor for the peripheral development of CD4+CD25+ Treg cells during the implantation period in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.