A Corrected Incompressible SPH (CISPH) method is proposed for accurate tracking of water surface in breaking waves. Corrective terms are derived based on a variational approach to ensure the angular momentum preservation of Incompressible SPH (ISPH) formulations. The proposed CISPH method is applied to solve the Navier-Stokes equation for simulating the breaking and post-breaking of solitary waves on a plane slope. The enhanced precision (compared to the ISPH method) of the CISPH method is confirmed through both qualitative and quantitative comparisons with experimental data. The introduction of corrective terms significantly improves the capability and the accuracy of the ISPH method in the simulation of wave breaking and post-breaking.
a b s t r a c tA new criterion is proposed for a more efficient assessment of free-surface particles in a particlebased simulation. Enhanced wave impact simulations are carried out by improved Incompressible SPH (ISPH) methods. The first improvement is the same as that in the Corrected ISPH (CISPH; [Khayyer A, Gotoh, H, Shao SD. Corrected incompressible SPH method for accurate water-surface tracking in breaking waves, Coast Eng 2008; 55 (3): 236-250]) method and is proposed for the improvement of momentum conservation. The second improvement is achieved by deriving and employing a higher order source term based on a more accurate differentiation to obtain a less fluctuating and more accurate pressure field. The enhanced performance of improved ISPH methods is demonstrated through the simulation of several fluid impact simulations in comparison with the experimental data and simulation results by other numerical methods.
Bradford Scholars -how to deposit your paper
Overview
Copyright check• Check if your publisher allows submission to a repository.• Use the Sherpa RoMEO database if you are not sure about your publisher's position or email openaccess@bradford.ac.uk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.