Big data for social transportation brings us unprecedented opportunities for resolving transportation problems for which traditional approaches are not competent and for building the next-generation intelligent transportation systems. Although social data have been applied for transportation analysis, there are still many challenges. First, social data evolve with time and contain abundant information, posing a crucial need for data collection and cleaning. Meanwhile, each type of data has specific advantages and limitations for social transportation, and one data type alone is not capable of describing the overall state of a transportation system. Systematic data fusing approaches or frameworks for combining social signal data with different features, structures, resolutions, and precision are needed. Second, data processing and mining techniques, such as natural language processing and analysis of streaming data, require further revolutions in effective utilization of real-time traffic information. Third, social data are connected to cyber and physical spaces. To address practical problems in social transportation, a suite of schemes are demanded for realizing big data in social transportation systems, such as crowdsourcing, visual analysis, and task-based services. In this paper, we overview data sources, analytical approaches, and application systems for social transportation, and we also suggest a few future research directions for this new social transportation field.
An improved mixture of probabilistic principal component analysis (PPCA) has been introduced for nonlinear data-driven process monitoring in this paper. To realize this purpose, the technique of a mixture of probabilistic principal component analyzers is utilized to establish the model of the underlying nonlinear process with local PPCA models, where a novel composite monitoring statistic is proposed based on the integration of two monitoring statistics in modified PPCA-based fault detection approach. Besides, the weighted mean of the monitoring statistics aforementioned is utilized as a metrics to detect potential abnormalities. The virtues of the proposed algorithm are discussed in comparison with several unsupervised algorithms. Finally, Tennessee Eastman process and an autosuspension model are employed to demonstrate the effectiveness of the proposed scheme further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.