Aqueous zinc-ion battery (ZIB) featuring with high safety, low cost, environmentally friendly, and high energy density is one of the most promising systems for large-scale energy storage application. Despite extensive research progress made in developing high-performance cathodes, the Zn anode issues, such as Zn dendrites, corrosion, and hydrogen evolution, have been observed to shorten ZIB’s lifespan seriously, thus restricting their practical application. Engineering advanced Zn anodes based on two-dimensional (2D) materials are widely investigated to address these issues. With atomic thickness, 2D materials possess ultrahigh specific surface area, much exposed active sites, superior mechanical strength and flexibility, and unique electrical properties, which confirm to be a promising alternative anode material for ZIBs. This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress. Firstly, the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced. Then, the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized. Finally, perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed.
The demand for high‐energy‐density and safe energy storage devices has spurred increasing interest in high‐voltage rechargeable magnesium batteries (RMB). As electrolytes are the bridge connecting the cathode and anode materials, the development of high‐voltage electrolytes is the key factor in realizing high‐voltage RMBs. This concept presents an overview of three chloride‐free electrolyte systems with wide electrochemical windows, together with the degradation mechanisms and modification strategies at the anode/electrolyte interphase. Finally, future directions in stabilizing Mg anodes and realizing high‐voltage RMBs are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.