Maritime autonomous surface ships (MASS) are proposed as a future technology of the maritime industry. One of the key technologies for the development of MASS is condition-based maintenance (CBM) based on prognostics and health management (PHM). The CBM technology can be used for early detection of abnormalities based on the database and for a prediction of the fault occurring in the future. However, this technology has a problem that requires a high-quality database that reproduces the operation state of the actual ships and quantitatively and systematically indicates the characteristics for the various fault state of the device. To solve this problem, this paper presents a study on the development method of the fault database based on the reliability. Firstly, the reliability analysis of the target device was performed to select five types of the core fault modes. After that, a fault simulation scenario that defined the fault simulation test methodology was drawn. A land-based testbed was built for the fault simulation test. The fault simulation database was developed with a total of 109 sets through the fault simulation test. Additionally, a fault classification algorithm based on deep learning is proposed. The classification performance was evaluated with a confusion matrix. The developed database will be expected to serve as the basis for the development CBM technology of MASS in the future.
With the development of the Internet of things, big data, and AI leading the 4th industrial revolution, it has become possible to acquire, manage, and analyze vast and diverse condition signals from various industrial machinery facilities. In addition, it has been revealed that various and large amounts of signals acquired from the facilities can be utilized for fault diagnosis. Currently, while data-driven fault diagnosis techniques applicable to the facilities are being developed, it has been tried to apply the techniques for the development of fully autonomous ships in the shipbuilding and shipping industry. Since the autonomous ships must be able to detect and diagnose the failures on their own in real time, the overall research is required on how to acquire signals from the ship facilities and use them to diagnose their failures. In this study, a fault diagnosis framework was proposed for condition-based maintenance (CBM) of ship oil purifiers, which are an auxiliary facility in the engine system of a ship. First, an oil purifier test-bed for simulating faults was built to obtain data on the state of the equipment. After extracting features using discrete wavelet decomposition from the data, the features were visualized by using t-distributed stochastic neighbor embedding, and were used to train support vector machine-based diagnostic models. Finally, the trained models were evaluated with Accuracy and F1 score, and some models scored 0.99 or higher, confirming high diagnostic performance. This study can be used as a reference for establishing CBM system and fault diagnosis system. Furthermore, this study is expected to improve the safety and reliability of oil purifiers in Degree 4 MASS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.