The formation of marine gas hydrates is controlled by gas migration and accumulation from lower sediments and by the conditions of the hydrate stability zone. Permeability and porosity are important factors to evaluate the gas migration capacity and reservoir sealing capacity, and to determine the distribution of hydrates in the stable region. Based on currently available geological data from field measurements in the Shenhu area of Baiyun Sag in the northern South China Sea, numerical simulations were conducted to estimate the influence of heterogeneities in porosity and permeability on the processes of hydrate formation and accumulation. The simulation results show that: (1) The heterogeneity of the hydrate stability zone will affect the methane migration within it and influence the formation and accumulation of hydrates. This is one of the reasons for the formation of heterogeneous hydrates. (2) When the reservoir is layered heterogeneously, stratified differences in gas lateral migration and hydrate formation will occur in the sediment, and the horizontal distribution range of the hydrate in a high porosity and permeability reservoir is wider. (3) To determine the dominant enrichment area of hydrate in a reservoir, we should consider both vertical and lateral conditions of the sedimentary layer, and the spatial coupling configuration relationships among the hydrate stability region, reservoir space and gas migration and drainage conditions should be considered comprehensively. The results are helpful to further understand the rules of hydrate accumulation in the Shenhu area on the northern slope of the South China Sea, and provide some references for future hydrate exploration and the estimation of reserves.
Authigenic carbonates are widely distributed in marine sediments, microbes, and anaerobic oxidation of methane (AOM) play a key role in their formation. The authigenic carbonates in marine sediments have been affected by weathering and diagenesis for a long time, it is difficult to understand their formation process by analyzing the samples collected in situ. A pore water environment with 10 °C, 6 MPa in the marine sediments was built in a bioreactor to study the stages and characteristics of authigenic carbonates formation induced by microbes. In experiments, FeCO3 is formed preferentially, and then FeCO3-MgCO3 complete isomorphous series and a small part of CaCO3 isomorphous mixture are formed. According to this, it is proposed that the formation of authigenic carbonates performed by AOM and related microbes needs to undergo three stages: the rise of alkalinity, the preferential formation of a carbonate mineral, and the formation of carbonate isomorphous series. This work provides experimental experience and reference basis for further understanding the formation mechanism of authigenic carbonates in marine sediments.
Submarine cold seep and its associated authigenic minerals in sediment are meaningful to indicate the existence of underlying natural gas hydrate. The anaerobic oxidation of methane (AOM) is coupled with sulfate reduction (SR) and influences the dissolution and precipitation of barite. However, the forming mechanism of barite is not yet clearly understood. In order to investigate the forming process of authigenic barite and its relationship with methane leakage flux, based on the measured data of the Qiongdongnan Basin in the Northern slope of the South China Sea, we constructed a 1D model of a sedimentary column to reproduce the formation of barite using the numerical simulation method. The results show that the original equilibrium of barite was broken by the cold seep fluids and Ba2+ was carried upward to the sulfate-rich zone leading to the formation of barite front. When there is no flux of methane from the bottom of sediment, the barite front disappears. The relationship between methane leakage flux and authigenic minerals was also discussed. It can be concluded that high methane flux corresponds to a shallow barite front in the sediment, furthermore, the barite content first increases and then decreases as the methane flux increases. At the same time, an inverse relationship between the ratio of authigenic barite to calcite and methane flux was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.