Creating secondary nanostructures from fundamental building blocks with simultaneous high loading capacity and well-controlled size/uniformity, is highly desired for nanoscale synergism and integration of functional units. Here a novel strategy is reported for hydrophobic quantum dots (QDs) assembley with porous templates, to form pitaya-type fluorescent silica colloids with densely packed and intact QDs throughout the silica matrix. The mercapto-terminated dendritic silica spheres with highly accessible centralradial pores and metal-affinity interior surface, are adopted as a powerful absorbent host for direct immobilization of QDs from organic phase with high loading capacity. The alkylsilane mediated silica encapsulation prevents QDs' optical degradation induced by ligand exchange and favors the homogeneous silica shell formation. These multiple QD embedded silica spheres exhibit good compatibility for different colored QDs with well-preserved fluorescence, high colloidal/optical stability, and versatile surface functionality. It is demonstrated that after integration with a lateral flow strip platform, these silica colloids provide an ultrasensitive, specific, and robust immunoassay for C-reaction protein in clinical samples as promising fluorescent reporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.