Magnetic nanobiochar (MNBC) is a sort of nanobiochar that has been enhanced with magnetic qualities. MNBC is made from a variety of feedstocks, including wood chips, agricultural waste, municipal sludge, animal manure, and other organic waste. These feedstocks are pyrolyzed at various temperatures to produce biochar, which is then mixed with magnetic precursors to create MNBC. Crystallinity, high porosity, specific surface area, and great catalytic activity are a few of the dynamic properties of MNBC. The major purpose of this review paper is to characterize MNBC, using the various biochar synthesis methods and how bulk biochar is converted into MNBC with their high-value applications discussed here.
Metal accumulation in 15 (C 3 and C 4 ) plants growing on crude oil spill laden soil and the responses of antioxidative enzymes were examined. In this study, the synergistic effect of four different metals was examined to find out the antioxidative stress responses. Plants were collected from their natural habitat (crude oil spill laden soil) during the rainy season at the vegetative stage (before flowering) and analyzed for shoot metal concentrations and activities of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). The shoot metal concentrations (mg kg -1 ) of all the individual metals (Mn, Co, Cd, and Zn) were found in different concentration. All the metal accumulating plants, CAT and SOD activities were found to be high in comparison to the control plants. The highest SOD activity was found in Cynodon dactylon (47 µg -1 FW) whereas the lowest was found in Fimbristylis dichotoma (13 µg -1 FW). The SOD activity increased considerably in all the metal accumulating plants, and the increase ranges 13-47 µg -1 FW. Catalase activity was also found to be high (2-18 µg -1 FW) in all the grass and sedges, of which the highest was recorded in Echinochloa colonna (18 µg -1 FW) and lowest in Arundo donax (2 µg -1 FW). The significant decrease in MDA activity (between 1-0.04 nmol g -1 FW) in the leaves of all metal accumulating plants, suggested metals in soil induced oxidative damage. The antioxidant responses among the species grown in a contaminated site displayed higher levels of activity in all the enzymes compared to no-polluted plants. Therefore, it can be assumed that the heavy metal uptake and bio-productivity (the coordinated manifestation of the efficiency that operates at various molecular and cellular level of these species) is sustained through antioxidative defense system in the examined plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.