A series of [(C^N)2 Ir(acac)] complexes [{5-(2-R-CB)ppy}2 Ir(acac)] (3 a-3 g; acac=acetylacetonate, CB=o-carboran-1-yl, ppy=2-phenylpyridine; R=H (3 a), Me (3 b), iPr (3 c), iBu (3 d), Ph (3 e), CF3 C6 H4 (3 f), C6 F5 (3 g)) with various 2-R-substituted o-carboranes at the 5-position in the phenyl ring of the ppy ligand were prepared. X-ray diffraction studies revealed that the carboranyl CC bond length increases with increasing steric and electron-withdrawing effects from the 2-R substituents. Although the absorption and emission wavelengths of the complexes are almost invariant to the change of 2-R group, the phosphorescence quantum efficiency varies from highly emissive (ΦPL ≈0.80 for R=H, alkyl) to poorly emissive (R=aryl) depending on the 2-R group and the polarity of the medium. Theoretical studies suggest that 1) the almost nonemissive nature of the 2-aryl-substituted complexes is mainly attributable to the large contribution to the LUMO in the S1 excited state from an o-carborane unit and 2) the variation in the CC bond length between the S0 and T1 state structures increases with increasing steric (2-alkyl) and electronic effects (2-aryl) of the 2-R substituent and the polarity of the solvent. The solution-processed electroluminescence (EL) devices that incorporated 3 b and 3 d as emitters displayed higher performance than the device based on the parent [(ppy)2 Ir(acac)] complex. Along with the high phosphorescence efficiency, the bulkiness of the 2-R-o-carborane unit is shown to play an important role in improving device performance.
While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm 2 . We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.