The extraordinary optoelectronic performance of hybrid organic-inorganic perovskites has resulted in extensive efforts to unravel their properties. Recently, observations of ferroic twin domains in methylammonium lead triiodide drew significant attention as a possible explanation for the current-voltage hysteretic behaviour in these materials. However, the properties of the twin domains, their local chemistry and the chemical impact on optoelectronic performance remain unclear. Here, using multimodal chemical and functional imaging methods, we unveil the mechanical origin of the twin domain contrast observed with piezoresponse force microscopy in methylammonium lead triiodide. By combining experimental results with first principles simulations we reveal an inherent coupling between ferroelastic twin domains and chemical segregation. These results reveal an interplay of ferroic properties and chemical segregation on the optoelectronic performance of hybrid organic-inorganic perovskites, and offer an exploratory path to improving functional devices.
We employ the sub-atomically focused beam of a scanning transmission electron microscope (STEM) to introduce and controllably manipulate individual dopant atoms in a 2D graphene lattice. The electron beam is used to create defects and subsequently sputter adsorbed source materials into the graphene lattice such that individual vacancy defects are controllably passivated by Si substitutional atoms. We further document that Si point defects may be directed through the lattice via e-beam control or modified (as yet, uncontrollably) to form new defects which can incorporate new atoms into the graphene lattice. These studies demonstrate the potential of STEM for atom-by-atom nanofabrication and fundamental studies of chemical reactions in 2D materials on the atomic level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.