The establishment of the fractional Black–Scholes option pricing model is under a major condition with the normal distribution for the state price density (SPD) function. However, the fractional Brownian motion is deemed to not be martingale with a long memory effect of the underlying asset, so that the estimation of the state price density (SPD) function is far from simple. This paper proposes a convenient approach to get the fractional option pricing model by changing variables. Further, the option price is transformed as the integral function of the cumulative density function (CDF), so it is not necessary to estimate the distribution function individually by complex approaches. Finally, it encourages to estimate the fractional option pricing model by the way of nonparametric regression and makes empirical analysis with the traded 50 ETF option data in Shanghai Stock Exchange (SSE).
This paper provides a new insight into an economical and effective sampling design method relying on the outcome-dependent sampling (ODS) design in large-scale cohort research. Firstly, the importance and originality of this paper is that it explores how to fit the covariate-adjusted additive Hazard model under the ODS design; secondly, this paper focused on estimating the distortion function through nonparametric regression and required observation of the covariate on the confounding factors of distortion; moreover, this paper further calibrated the contaminated covariates and proposed the estimators of the parameters by analyzing the calibrated covariates; finally, this paper established the large sample property and asymptotic normality of the proposed estimators and conducted many more simulations to evaluate the finite sample performance of the proposed method. Empirical research demonstrates that the results from both artificial and real data verified good performance and practicality of the proposed ODS method in this paper.
In this paper, we first present the expression of a model of a fourth-order compact finite difference (CFD) scheme for the convection diffusion equation with variable convection coefficient. Then, we also obtain the fourth-order CFD schemes of the diffusion equation with variable diffusion coefficients. In addition, a fine description of the sixth-order CFD schemes is also developed for equations with constant coefficients, which is used to discuss certain partial differential equations (PDEs) with arbitrary dimensions. In this paper, various ways of numerical test calculations are prepared to evaluate performance of the fourth-order CFD and sixth-order CFD schemes, respectively, and the empirical results are proved to verify the effectiveness of the schemes in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.