BackgroundDistant metastasis is the major cause of mortality in patients with locally advanced rectal cancer (LARC) following neoadjuvant chemoradiotherapy. Local radiotherapy can trigger an abscopal response to metastatic tumor cells. However, the abscopal effect is a rare event. CD4+ regulatory T (Treg) cell is a highly immune-suppressive subset which impedes immune surveillance against cancer, prevents the development of effective antitumor immunity and promotes tumor progression. We assume that the exploitation of the proimmunogenic effects of radiotherapy with anti-CD25 or anti-Cytotoxic T-Lymphocyte Associated Protein 4 (anti-CTLA4) monoclonal antibodies (mAbs) may enhance the local and abscopal effects in rectal cancer and improve the therapeutic outcome.MethodsmRNA expression profiling of 81 pretreatment biopsy samples from LARC patients who received neoadjuvant radiotherapy (nRT) was performed to analyze the correlation between gene expression and prognosis. A retrospective analysis of patients with rectal cancer with distant metastasis or synchronous extracolonic cancers was performed to evaluate the abscopal effect of radiotherapy on rectal cancer. Two different dual-tumor mouse models were established to investigate the efficacy of single dose and dose-fractionated radiotherapy combined with anti-CD25 or anti-CTLA4 and anti-Programmed cell death 1 ligand 1 (anti-PD1) mAbs on the local tumor growth and liver metastasis. The univariate Cox regression analysis, one-way analysis of variance, Dunnett’s test, a mixed-effect linear model and Kaplan-Meier survival analysis were used to calculate p values.ResultsThe proportion of Tregs in pre-nRT biopsies was negatively correlated with prognosis (p=0.007). The retrospective analysis showed that regressing liver metastases were infiltrated by CD8+ T cells. In contrast, stable/progressing metastases and synchronous extracolonic cancers were characterized by PD1+ T cells and Tregs infiltration. Animal experiment results demonstrated that the combination of radiotherapy and anti-CD25/CTLA4 mAb resulted in a significant increase in CD8+ T cells and CD8+/CD4+ ratio in primary and secondary tumors compared with the irradiation alone group (all p<0.05 or p<0.01). The combined treatment was able to decrease Tregs, PD1+CD8+ and PD1+CD4+ T cells (p<0.05), suppress locally irradiated and distal unirradiated tumor growth, and improve overall survival rate. Radiotherapy in conjunction with anti-CTLA4 reduced liver metastasis (p<0.05).ConclusionsThese data indicated that radiotherapy plus depletion of Tregs was able to improve the antitumor response and generate an abscopal effect.
Positioning essential elements of photodynamic therapy(PDT) near to mitochondria can conquer the rigorous spatiotemporal limitations of reactive oxygen species (ROS) transfer and make considerable differences in PDT.However, precise accumulation of photosensitizer (PS) and oxygen within mitochondria is still challenging. We simultaneously encapsulated hexyl 5-aminolevulinate hydrochloride (HAL) and 3-bromopyruvic acid (3BP) into microparticles collected from X-ray-irradiated tumor cells (X-MP). After systemic administration, the developed HAL/3BP@X-MP can specifically target and recognizet umor cells,w here HAL induces efficient accumulation of PpIX in mitochondria via the intrinsic haem biosynthetic pathway.Meanwhile,3BP remarkably increases the oxygen supply by inhibiting mitochondrial respiration. The accurate co-localization and prompt encounter of PpIX and oxygen produce sufficient ROS to directly disrupt mitochondria, resulting in significantly improved PDT outcomes.
Mitochondria are crucial for both sonodynamic therapy and antitumor immunity. However, how to accurately damage mitochondria and meanwhile prevent the mitophagy and immune checkpoint inhibition is still a great challenge. Herein, hexyl 5aminolevulinate hydrochloride (HAL) and 3-methyladenine (3MA) are loaded into the tumor cell-derived microparticle (X-MP), which can direct the target delivery of the prepared HAL/3MA@X-MP to the tumor cells. HAL induces the confined biosynthesis and accumulation of sonosensitizer PpIX in mitochondria, leading to the localized generation of reactive oxygen species (ROS) upon ultrasound irradiation and, thus, the efficient mitochondrial damage. Meanwhile, 3MA not only inhibits mitophagy but also down-regulates the PD-L1 expression, promoting the immunogenic cell death (ICD) while blocking the immune checkpoint recognition. The smart synergism of precise mitochondrial damage, mitophagy inhibition and antitumor immunity results in potent therapeutic efficacy without obvious side effects.
PurposeThis study was to propose and validate an efficient and streamlined quality assurance (QA) method with a single phantom setup to check performances of patient positioning guidance systems including six-degree-of-freedom (6DoF) couch, X-ray modalities (kV–kV, MV–MV and CBCT), optical surface imaging system (AlignRT), lasers and optical distance indicator (ODI).Methods and MaterialsThe QA method was based on a pseudo-patient treatment plan using the AlignRT cube phantom. The cube was first randomly set up on the couch, and the initial position offsets were acquired by AlignRT and CBCT. The cube was restored to its reference position by 6DoF couch shift, during which the couch motion accuracy and tracking performances of AlignRT and CBCT were derived. After that, the residual offsets were acquired by kV–kV, MV–MV and AlignRT to derive the isocenter discrepancies. Finally, the laser alignment and ODI values were visually inspected. The QA procedure had been internally approved as a standard weekly QA test, and the results over 50 weeks were longitudinally analyzed for clinical validation.ResultsThe 6DoF couch motion errors as well as the tracking errors of AlignRT were sub-millimeter and sub-degree, and no deviation over 1 mm or 1 deg was identified. The ROI mode of isocenter (ISO) in AlignRT exhibited more consistent results than the centroid (CEN). While the isocenter discrepancy between CBCT and kV–kV was negligible, the maximal discrepancies between CBCT and MV–MV were 0.4 mm in LNG and 0.3 deg in PITCH. The isocenter discrepancies between CBCT and AlignRT were <0.5 mm in translation and <0.3 deg in rotation. For AlignRT, the isocenter discrepancies between the DICOM and SGRT references were about 0.6 mm in VRT, 0.5 mm in LNG and 0.2 deg in PITCH. As the therapists became familiar with the workflow, the average time to complete the whole procedure was around 23 min.ConclusionsThe streamlined QA exhibits desirable practicality as an efficient multipurpose performance check on positioning guidance systems. The stability, tracking performance and isocenter congruence of the positioning guidance systems have been fully validated for all clinical image guidance RT application, even SRS/SBRT, which requires the strictest tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.