Abstract. K-optimal rule discovery finds the k rules that optimize a user-specified measure of rule value with respect to a set of sample data and user-specified constraints. This approach avoids many limitations of the frequent itemset approach of association rule discovery. This paper presents a scalable algorithm applicable to a wide range of k-optimal rule discovery tasks and demonstrates its efficiency.
We present the method developed for migrating the Foundational Model of Anatomy (FMA) from its representation with frames in Protégé to its logical representation in OWL and our experience in reasoning with it. Despite the extensive use of metaclasses in Protégé, it proved possible to convert the FMA from Protégé into OWL DL, while capturing most of its original features. The conversion relies on a set of translation and enrichment rules implemented with flexible options. Unsurprisingly, reasoning with the FMA in OWL proved to be a real challenge, due to its sheer size and complexity, and raised significant inference problems in terms of time and memory requirements. However, various smaller versions have been successfully handled by Racer. Some inconsistencies were identified and several classes reclassified. The results obtained so far show the advantage of OWL DL over frames and, more generally, the usefulness of DLs reasoners for building and maintaining the large-scale biomedical ontologies of the future Semantic Web.
An ontology is a formal representation of a domain modeling the entities in the domain and their relations. When a domain is represented by multiple ontologies, there is need for creating mappings among these ontologies in order to facilitate the integration of data annotated with these ontologies and reasoning across ontologies. The objective of this paper is to recapitulate our experience in aligning large anatomical ontologies and to reflect on some of the issues and challenges encountered along the way. The four anatomical ontologies under investigation are the Foundational Model of Anatomy, GALEN, the Adult Mouse Anatomical Dictionary and the NCI Thesaurus. Their underlying representation formalisms are all different. Our approach to aligning concepts (directly) is automatic, rule-based, and operates at the schema level, generating mostly point-to-point mappings. It uses a combination of domain-specific lexical techniques and structural and semantic techniques (to validate the mappings suggested lexically). It also takes advantage of domain-specific knowledge (lexical knowledge from external resources such as the Unified Medical Language System, as well as knowledge augmentation and inference techniques). In addition to point-to-point mapping of concepts, we present the alignment of relationships and the mapping of concepts groupto-group. We have also successfully tested an indirect alignment through a domain-specific reference ontology. We present an evaluation of our techniques, both against a gold standard established manually and against a generic schema matching system. The advantages and limitations of our approach are analyzed and discussed throughout the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.