Cancer stem cells (CSCs) have been suggested as responsible for the initiation and progression of cancers. Octamer-binding transcription factor 4 (Oct4) is an important regulator of embryonic stem cell fate. Here, we investigated whether Oct4 regulates stemness of head and neck squamous carcinoma (HNSC) CSCs. Our study showed that ectopic expression of Oct4 promotes tumor growth through cyclin E activation, increases chemoresistance through ABCC6 expression and enhances tumor invasion through slug expression. Also, Oct4 dedifferentiates differentiated HNSC cells to CSC-like cells. Furthermore, Oct4(high) HNSC CSCs have more stem cell-like traits compared with Oct4(low) cells, such as self-renewal, stem cell markers' expression, chemoresistance, invasion capacity and xenograft tumorigeneity in vitro and in vivo. In addition, knockdown of Oct4 led to markedly lower HNSC CSC stemness. Finally, there was a significant correlation between Oct4 expression and survival of 119 HNSC patients. Collectively, these data suggest that Oct4 may be a critical regulator of HNSC CSCs and its targeting may be potentially valuable in the treatment of HNSC CSCs.
Accumulating evidence suggests that a distinct subpopulation of cancer stem cells (CSCs) is responsible for tumour initiation and progression in head and neck squamous cell carcinoma (HNSCC). Wnt/β-catenin signalling is essential for stem cell regulation and tumourigenesis, but its molecular mechanism in HNSCC CSCs remains unknown. We investigated whether Wnt/β-catenin signalling regulates self-renewal and tumourigenicity of HNSCC stem-like cells in vitro and in vivo. Cytoplasmic/nuclear β-catenin, a major effector of Wnt/β-catenin signalling, was expressed in a subpopulation of tumour cells in primary HNSCC tissue but in none of normal head and neck tissues. Overexpression of β-catenin increased proliferation of HNSCC cells and induced dedifferentiation of these cells to cells with stem-like features. Knockdown of β-catenin in HNSCC stem-like cells blocked their self-renewal capacity, stemness-associated gene expression, chemoresistance, and in vivo tumourigenicity. Furthermore, β-catenin directly regulates Oct4 transcription in HNSCC stem-like cells. In addition, the effect of shRNA-mediated repression of β-catenin on CSC traits in HNSCC stem-like cells was reversed by overexpression of Oct4. In patients with HNSCC, higher levels of both cytoplasmic/nuclear β-catenin and Oct4 correlated with the worst prognosis. These results suggest inhibition of Wnt/β-catenin signalling as a novel therapeutic strategy for targeting HNSCC stem-like cells.
Pyrosequencing may be suitable for detecting the BRAF(V600E) mutation in thyroid incidentaloma and may be superior to dideoxy sequencing when low amounts of the mutant template are present in the biopsy.
BackgroundThe BRAFV600E mutation leading to constitutive signaling of MEK-ERK pathways causes papillary thyroid cancer (PTC). Ras association domain family 1A (RASSF1A), which is an important regulator of MST1 tumor suppressor pathways, is inactivated by hypermethylation of its promoter region in 20 to 32% of PTC. However, in PTC without RASSF1A methylation, the regulatory mechanisms of RASSF1A-MST1 pathways remain to be elucidated, and the functional cooperation or cross regulation between BRAFV600E and MST1,which activates Foxo3,has not been investigated.Methodology/Principal FindingsThe negative regulators of the cell cycle, p21 and p27, are strongly induced by transcriptional activation of FoxO3 in BRAFV600E positive thyroid cancer cells. The FoxO3 transactivation is augmented by RASSF1A and the MST1 signaling pathway. Interestingly, introduction of BRAFV600Emarkedly abolished FoxO3 transactivation and resulted in the suppression of p21 and p27 expression. The suppression of FoxO3 transactivation by BRAFV600Eis strongly increased by coexpression of MST1 but it is not observed in the cells in which MST1, but not MST2,is silenced. Mechanistically, BRAFV600Ewas able to bind to the C-terminal region of MST1 and resulted in the suppression of MST1 kinase activities. The induction of the G1-checkpoint CDK inhibitors, p21 and p27,by the RASSF1A-MST1-FoxO3 pathway facilitates cellular apoptosis, whereasaddition of BRAFV600E inhibits the apoptotic processes through the inactivation of MST1. Transgenic induction of BRAFV600Ein the thyroid gland results in cancers resembling human papillary thyroid cancers. The development of BRAFV600Etransgenic mice with the MST1 knockout background showed that these mice had abundant foci of poorly differentiated carcinomas and large areas without follicular architecture or colloid formation.Conclusions/SignificanceThe results of this study revealed that the oncogenic effect of BRAFV600E is associated with the inhibition of MST1 tumor suppressor pathways, and that the activity of RASSF1A-MST1-FoxO3 pathways determines the phenotypes of BRAFV600E tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.