Although strategies of compositing noble materials and Zeolitic imidazolate frameworks (ZIFs) have been used to enhance the performance of ZIF-based surface-enhanced Raman scattering (SERS) substrates, the enhancement process still remains unclear and the sampling process with powder-form substrates is challenging for practical applications. In this study, a exible SERS substrate with silver (Ag) nanoparticle decorated ZIF-67 as the active materials and cotton fabric as the supporting framework is developed with a facile method in two steps. The proposed exible SERS substrate not only can reduce di culties during the sampling process, but also expands future applications for sampling towards irregular target substances. Meanwhile, the enhancement mechanism has been investigated by using Methylene Blue (MB) to probe the molecular interactions. The constructed SERS substrate shows the highest enhancement factor of 6.25×10 6 and an excellent detection sensitivity with a limitation of detection (LoD) of 10 − 14 M/L. Because of its excellent performance in SERS tracing, the proposed SERS substrate shows exceptional ability in detecting and identifying phenol-soluble modulins and is considered to be a label-free approach that requires no adding markers/tags or antibodies. The proposed substrate expands the potential applications of SERS technology for rapid detection of bacterial toxins during clinical diagnoses and treatment.
Although strategies of compositing noble materials and Zeolitic imidazolate frameworks (ZIFs) have been used to enhance the performance of ZIF-based surface-enhanced Raman scattering (SERS) substrates, the enhancement process still remains unclear and the sampling process with powder-form substrates is challenging for practical applications. In this study, a flexible SERS substrate with silver (Ag) nanoparticle decorated ZIF-67 as the active materials and cotton fabric as the supporting framework is developed with a facile method in two steps. The proposed flexible SERS substrate not only can reduce difficulties during the sampling process, but also expands future applications for sampling towards irregular target substances. Meanwhile, the enhancement mechanism has been investigated by using Methylene Blue (MB) to probe the molecular interactions. The constructed SERS substrate shows the highest enhancement factor of 6.25×106 and an excellent detection sensitivity with a limitation of detection (LoD) of 10− 14 M/L. Because of its excellent performance in SERS tracing, the proposed SERS substrate shows exceptional ability in detecting and identifying phenol-soluble modulins and is considered to be a label-free approach that requires no adding markers/tags or antibodies. The proposed substrate expands the potential applications of SERS technology for rapid detection of bacterial toxins during clinical diagnoses and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.