Aromatic difluoroboron β-diketonate complexes (BF2bdks) are classic fluorescent molecules that have been explored as photochemical reagents, two-photon dyes, and oxygen sensors. To gain a better understanding of their emissive properties in both solution and polymer matrices, BF2bdks with varying aromatic groups were synthesized and their photophysical properties were investigated in both methylene chloride and poly(lactic acid) (PLA). Absorption spectra showed systematic variations that are well correlated with structural features, including the size of the aryl substituent and the presence of a para electron donating methoxy substituent. Computational modeling of the absorption spectra with the TD-B3LYP/6-311+G(d)//B3LYP/6-31G(d) formulation of density functional theory and a polarizable continuum model of dichloromethane solvent shows that all systems show intense π–π* one-electron excitations, usually from one of the highest occupied MOs (HOMO-k, k=0, 1, 2) to the lowest unoccupied MO (LUMO). Emission properties are sensitive to the dye structure and medium. Based on spectroscopic and lifetime studies, BF2bdks exhibit comparable fluorescence properties in both solutions and polymers when the diketonate group is functionalized with smaller aromatic ring systems such as benzene. For BF2bdks with larger arene ring systems, such as anthracene, emission from a strong intramolecular charge-transfer (ICT) state was also noted in both solution and in PLA. There are differences in relative intensities of peaks arising from π-π* and ICT excitations depending upon dye loading in PLA. Substituent effects were also observed. Electron-donating methoxyl groups on the aromatic rings lead to enhanced fluorescence quantum yields. For certain dyes, phosphorescence is detected at low temperature or under a nitrogen atmosphere in PLA matrices.
Fluorescence spectroscopy has been widely used to monitor different polymer processes such as polymerization kinetics, chain entanglements, and thermal transitions. The solvent-free controlled ring-opening polymerization (ROP) of lactide is significant both commercially and for research; thus, monitoring this process with a simple fluorescence method can be very useful. Here, a fluorescent dye, difluoroboron 4-methoxydibenzoylmethane (BF(2)dbmOMe) is employed to probe lactide bulk ROP by measuring the emission from solidified reaction aliquots at room temperature. It was found that, through the course of polymerization, the fluorescence of BF(2)dbmOMe in the solid-state aliquots exhibited a systematic shift from yellow to green and then to blue, accompanied by a gradual reduction in the decay lifetime. The fluorescence color change is sensitive to the monomer percent conversion, not the polymer molecular weight. On the basis of these observations and experimental data, we propose that the long-wavelength emission with perceivably longer lifetimes arises from BF(2)dbmOMe dye aggregates (ground and/or excited states), while the dissolved individual dye molecules are responsible for the blue fluorescence with a shorter lifetime. This demonstration of the utility of BF(2)dbmOMe as a fluorescent probe for lactide polymerization could have important practical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.