Poly( N, N'-bis(4-butylphenyl) N, N'-bis(phenyl)benzidine) (poly-TPD) and poly(9-vinylcarbazole) (PVK) are both traditional hole transport layers (HTLs) in quantum dot light emitting diodes (QLEDs). Nevertheless, the low highest occupied molecular orbital of poly-TPD and poor hole mobility of PVK always result in poor performance of QLEDs when individually used as HTLs. Unfortunately, fabricating stepwise HTLs with poly-TPD and PVK faces technical problems until now. We demonstrate an effective method to construct the stepwise poly-TPD and PVK HTLs by utilizing the technique of hot spin-coating PVK in m-xylene on poly-TPD film. During this hot spin-coating process, the underlying poly-TPD remains unwashed and undamaged, benefiting the all-solution-processed QLED fabrication. The optimized all-solution-processed QLED with stepwise poly-TPD and PVK HTLs shows a maximum external quantum efficiency (EQE) of 15.3% and a maximum luminance of 17 110 cd/m with a low turn-on voltage ( V) of 1.75 V. The maximum EQE is about 6.6 times higher than that of the reference QLED using a cold spin-coating process. The enhancement of the QLED performance can be attributed to the improvement of surface morphology and charge injection balance for the hot spin-coating stepwise co-HTLs based QLEDs. This work manifests the positive effect on performance boost by a hot spin-coating strategy toward stepwise co-HTLs formation and paves the way to fabricate highly efficient all-solution-processed light emitting diodes.
A highly twisted electron acceptor 10-phenyl-10H-phenothiazine 5,5-dioxide was designed for construction of AIDF material PXZ2PTO. The non-doped devices realized EQEmax of 16.4%, exhibiting similar efficiency to doped devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.