Water processing is an ideal strategy for the ecofriendly fabrication of organic photovoltaics (OPVs) and exhibits a strong market−driven demand. Here, we report a state−of−the−art active material, namely PM6:BTP−eC9, for the synthesis of water−borne nanoparticle (NP) dispersion towards ecofriendly OPV fabrication. The surfactant−stripping technique, combined with a poloxamer, facilitates purification and eliminates excess surfactant in water−dispersed organic semiconducting NPs. The introduction of 1,8−diiodooctane (DIO) for the synthesis of surfactant−stripped NP (ssNP) further promotes a percolated microstructure of the polymer and NFA in each ssNP, yielding water−processed OPVs with a record efficiency of over 11%. The use of an additive during water−borne ssNP synthesis is a promising strategy for morphology optimization in NP OPVs. It is believed that the findings in this work will engender more research interest and effort relating to water−processing in preparation of the industrial production of OPVs.
Regular patterns can form spontaneously in chemical reaction-diffusion systems under non-equilibrium conditions as proposed by Alan Turing. Here, we found that regular patterns can be generated in uphill-diffusion solution systems without a chemical reaction process through both in-situ and ex-situ observations. Organic semiconductor solution is confined between two parallel plates with controlled micron/submicron-meter distance to minimize convection of the liquid and avoid spinodal precipitation at equilibrium. The solvent evaporation concentrates the solution gradually into an oversaturated non-equilibrium condition, under which a phase-transition occurs and ordered concentration-waves are generated. By proper tuning of the experimental parameter, multiple regular patterns with micro/nano-meter scaled features (line, square-grid, zig-zag, and fence-like patterns etc.) were observed. We explain the observed phenomenon as Turing-pattern generation resulted from uphill-diffusion and solution oversaturation. The generated patterns in the solutions can be condensed onto substrates to form structured micro/nanomaterials. We have fabricated organic semiconductor devices with such patterned materials to demonstrate the potential applications. Our observation may serve as a milestone in the progress towards a fundamental understanding of pattern formation in nature, like in biosystem, and pave a new avenue in developing self-assembling techniques of micro/nano structured materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.