Cardiac fibrosis is a pathological remodeling response to myocardial infarction (MI) and impairs cardiac contractility. Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is increased in patients with MI. However, the functions of MALAT1 in cardiac fibrosis have not been elucidated. This study elucidates the roles of MALAT1 in MI and the underlying mechanisms. The MI model was established by artificial coronary artery occlusion in mice. Western blot analysis and quantitative reverse transcription-polymerase chain reaction were performed to analyze protein expression and RNA expression, respectively. Cardiac function was measured by echocardiography. Masson's trichrome staining was used to exhibit the fibrotic area in MI hearts. Cardiac fibroblasts were isolated from newborn pups, and cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Upregulation of MALAT1 and downregulation of microRNA-145 (miR-145) were induced in MI heart and angiotensin II (AngII)-treated cardiac fibroblasts, and the inhibition of miR-145 expression was reversed by MALAT1 depletion. Knockdown MALAT1 ameliorated MI-impaired cardiac function and prevented AngII-induced fibroblast proliferation, collagen production, and α-SMA expression in cardiac fibroblasts. MALAT1 stability and transforming growth factor-β1 (TGF-β1) activity were regulated by miR-145. AngII-induced TGF-β1 activity in cardiac fibroblasts was blocked by MALAT1 knockdown. Based on these results, we concluded that lncRNA MALAT1 promotes cardiac fibrosis and deteriorates cardiac function post-MI by regulating TGF-β1 activity via miR-145.
Alcohol abuse is a risk factor for a distinct form of congestive heart failure, known as alcoholic cardiomyopathy (ACM). Here, we investigate how microRNAs may participate in the induction of cardiomyocyte apoptosis associated with ethanol exposure in vitro. Increasing the concentrations of ethanol to primary rat cardiomyocytes resulted in elevated apoptosis assessed by annexin V and propidium iodide staining, and reduced expression of an enzyme for alcohol detoxification aldehyde dehydrogenase 2 (ALDH2). These ethanol effects were accompanied by a substantial elevation of miR378a-5p. Driving miR-378a-5p overexpression in cardiomyocytes decreased ALDH2. The specific interaction of miR-378a-5p with the 3'UTR of ALDH2 was examined by luciferase reporter assays, and we found that miR-378a-5p activity depends on a complementary base pairing at the 3′-UTR region of ALDH2 mRNA. Finally, ethanol-induced apoptosis in cardiomyocytes was attenuated in the presence of anti-miR378a-5p. Collectively, these data implicate a likely involvement of miR-378a-5p in the stimulation of cardiomyocyte apoptosis through ALDH2 gene suppression, which might play a potential role in the pathogenesis of ACM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.