A linear-hyperbranched supramolecular amphiphile was synthesized through the noncovalent coupling of adamantane-functionalized long alkyl chain (AD-C(n), n = 12, 18, 30) and hyperbranched polyglycerol grafted from β-cyclodextrin (CD-g-HPG) by the specific AD/CD host-guest interactions. The obtained supramolecular C(n)-b-HPGs self-assembled into unilamellar vesicles with great ductility that could be disassembled readily under a competitive host of β-CD.
In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.
Well-defined ultrathin nanotubes (30 nm in diameter and of micrometer-scale length) were generated through the self-assembly of a novel alternative copolymer synthesized using an epoxy-thiol click-chemistry reaction. The self-assembly mechanism was investigated both by experiments and using dissipative particle dynamics (DPD) simulations. The obtained nanotubes can be readily functionalized with carboxy groups, amino groups, peptides, or other groups by simple modular click copolymerization.
A novel class of redox-responsive cationic supramolecular polymer with effective DNA condensation ability and H2O2-induced DNA release behavior has been successfully constructed from small molecules. This supramolecular polymer can be used in vitro as a promising nonviral vector for gene therapy.
A novel targeting cancer imaging platform based on aptamer-functionalized amphiphilic hyperbranched copolymer conjugates, which can self-assemble into nanoscopic micelles with a core-shell structure and a narrow size distribution, has been designed and synthesized. The size, morphology, fluorescence performance, and cytotoxicity of micelles were studied by dynamic light scattering, transmission electron microscopy, fluorescence spectroscopy, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. The results indicate that these micelles have low cytotoxicity against MCF-7 cells and can be easily internalized by MCF-7 cells. In addition, they also exhibit enhanced cell uptake, excellent fluorescence properties, and smart targeting capability in vitro, indicating great potential to be promising carriers for bioimaging and cancer specific delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.