A fungus identified as Fusarium equiseti was isolated from soil and found to carry out 7,3-hydroxylation of lithocholic acid to ursodeoxycholic acid (35% yield; 350 mg/liter) in 112 h.
Ursodeoxycholic acid dissolves cholesterol gallstones in humans. In the present study optimum conditions for ursodeoxycholic acid production by Fusarium equiseti M41 were studied. Resting mycelia of F. equiseti M41 showed maximum conversion at 28°C, pH 8.0, and dissolved oxygen tension of higher than 60% saturation. Monovalent cations, such as Na+, K+, and Rb+, stimulated the conversion rate more than twofold. In the presence of 0.5 M KCI, the initial uptake rate and equilibrium concentration of lithocholic acid (substrate) were enhanced by 5.7-and 1.7-fold, respectively. We confirmed that enzyme activity catalyzing 7fi-hydroxylation of lithocholic acid was induced by substrate lithocholic acid. The activity in the mycelium was controlled by dissolved oxygen tension during cultivation: with a dissolved oxygen tension of 15% and over, the activity peak appeared at 25 h of cultivation, whereas the peak was delayed to 34 and 50 h with 5 and 0% dissolved oxygen tension, respectively. After reaching the maximum, the 70i-hydroxylation activity in the mycelium declined rapidly at pH 7.0, but the decline was retarded by increasing the pH to 8.0. Several combinations of operations, such as pH shift (from pH 7 to 8), addition of 0.5 M KCI, and dissolved oxygen control, were applied to the production of ursodeoxycholic acid in a jar fermentor, and a much larger amount of ursodeoxycholic acid (1.2 g/liter) was produced within 96 h of cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.