It is not clear whether D-dimer can be an independent predictor of coronavirus disease 2019 (COVID-19) mortality, and the cut-off of D-dimer for clinical use remains to be determined. Therefore, a comprehensive analysis is still necessary to illuminate the clinical significance of plasma D-dimer in COVID-19 mortality. We searched PubMed, Embase, Cochrane Library, and Scopus databases until November 2020. STATA software was used for all the statistical analyses. The identifier of systematic review registration was PROSPERO CRD42020220927. A total of 66 studies involving 40,614 COVID-19 patients were included in our meta-analysis. Pooled data showed that patients in high D-dimer group had poor prognosis than those in low D-dimer group [OR = 4.52, 95% CI = (3.61, 5.67), P < 0.001; HR = 2.81, 95% CI = (1.85, 4.27), P < 0.001]. Sensitivity analysis, pooled data based on different effect models and the Duval and Tweedie trim-and-fill method did not change the conclusions. Subgroup analyses stratified by different countries, cutoffs, sample size, study design, and analysis of OR/HR still keep consistent conclusions. D-dimer was identified as an independent predictor for COVID-19 mortality. A series of values including 0.5 μg/ml, 1 μg/ml, and 2 μg/ml could be determined as cutoff of D-dimer for clinic use. Measurement and monitoring of D-dimer might assist clinicians to take immediate medical actions and predict the prognosis of COVID-19.
Gastrointestinal (GI) cancers, including colorectal cancer, pancreatic cancer, liver cancer and gastric cancer, are severe social burdens due to high incidence and mortality rates. Bromodomain and extra-terminal (BET) proteins are epigenetic readers consisting of four conserved members (BRD2, BRD3, BRD4 and BRDT). BET family perform pivotal roles in tumorigenesis through transcriptional regulation, thereby emerging as potential therapeutic targets. BET inhibitors, disrupting the interaction between BET proteins and acetylated lysines, have been reported to suppress tumor initiation and progression in most of GI cancers. In this review, we will demonstrate how BET proteins participate in the GI cancers progression and highlight the therapeutic potential of targeting BET proteins for GI cancers treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.