Fat deposition is a crucial element in pig production that affects production efficiency, quality and consumer choices. In this study, Duroc pigs, a Western, famous lean pig breed, and Luchuan pigs, a Chinese, native obese pig breed, were used as animal materials. Transcriptome sequencing was used to compare the back adipose tissue of Duroc and Luchuan pigs, to explore the key genes regulating fat deposition. The results showed that 418 genes were highly expressed in the Duroc pig, and 441 genes were highly expressed in the Luchuan pig. In addition, the function enrichment analysis disclosed that the DEGs had been primarily enriched in lipid metabolism, storage and transport pathways. Furthermore, significant differences in the metabolic pathways of alpha-linolenic acid, linoleic acid and arachidonic acid explained the differences in the flavor of the two kinds of pork. Finally, the gene set enrichment analysis (GSEA) exposed that the difference in fat deposition between Duroc and Luchuan pigs may be due to the differential regulation of the metabolism pathway of fatty acid. Therefore, this study described the differential expression transcriptional map of adipose tissue of Duroc pig and Luchuan pig, identified the functional genes regulating pig fat deposition, and provided new hypotheses and references for further study of fat development.
The prevalence of obesity and its associated diseases has increased dramatically, and they are major threats to human health worldwide. A variety of approaches, such as physical training and drug therapy, can be used to reduce weight and reverse associated diseases; however, the efficacy and the prognosis are often unsatisfactory. It has been reported that natural food-based small molecules can prevent obesity and its associated diseases. Among them, alkaloids and polyphenols have been demonstrated to regulate lipid metabolism by enhancing energy metabolism, promoting lipid phagocytosis, inhibiting adipocyte proliferation and differentiation, and enhancing the intestinal microbial community to alleviate obesity. This review summarizes the regulatory mechanisms and metabolic pathways of these natural small molecules and reveals that the binding targets of most of these molecules are still undefined, which limits the study of their regulatory mechanisms and prevents their further application. In this review, we describe the use of Discovery Studio for the reverse docking of related small molecules and provide new insights for target protein prediction, scaffold hopping, and mechanistic studies in the future. These studies will provide a theoretical basis for the modernization of anti-obesity drugs and promote the discovery of novel drugs.
The rising prevalence of nonalcoholic fatty liver disease (NAFLD) has become a global health threat that needs to be addressed urgently. Basic leucine zipper ATF-like transcription factor (BATF) is commonly thought to be involved in immunity, but its effect on lipid metabolism is not clear. Here, we investigated the function of BATF in hepatic lipid metabolism. BATF alleviated high-fat diet (HFD)-induced hepatic steatosis and inhibited elevated programmed cell death protein (PD)1 expression induced by HFD. A mechanistic study confirmed that BATF regulated fat accumulation by inhibiting PD1 expression and promoting energy metabolism. PD1 antibodies alleviated hepatic lipid deposition. In conclusion, we identified the regulatory role of BATF in hepatic lipid metabolism and that PD1 is a target for alleviation of NAFLD. This study provides new insights into the relationship between BATF, PD1 and NAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.