Objective. To observe the effect of berberine (BBR) on kidney cell pyroptosis in golden hamsters with diabetic nephropathy (DN) and to explore the molecular mechanism of its renal protection. Methods. Fifty clean-grade male golden hamsters were randomly divided into a control group (10) and a model building group (40). The DN model was established by high-sugar and high-fat feeding and injection of a small amount of STZ. After successful establishment of the model, they were randomly divided into a model group, western medicine group, and berberine high- and low-dose groups. The western medicine group was given irbesartan 13.5 mg/kg, and the berberine high- and low-dose groups were given BBR 200 mg/kg and 100 mg/kg, respectively, for 8 consecutive weeks. An automatic biochemical analyser was used to measure blood glucose, blood lipids, kidney function, MDA, and other indicators; radioimmunoassay was used to assess serum insulin; enzyme-linked immunosorbent assay (ELISA) was used to quantify IL-1β, IL-6, IL-18, TNF-α; HE, PAS, and Masson staining were used to observe kidney pathological tissue morphology; western blot and real-time fluorescent quantitative PCR were used to assess protein and mRNA expression of molecules, such as Nrf2, NLRP3, Caspase-1, and GSDMD; and TUNEL staining was used to detect DNA damage. SPSS statistical software was used for the data analysis. Results. The kidney tissues of golden hamsters in the control group were normal; Nrf2 was highly expressed, serum MDA level was low, NLRP3 expression in kidney tissue was not obvious, Caspase-1 and GSDMD were weakly expressed, and only a few TUNEL-positive cells were observed. Compared with the control group, the golden hamsters in the model group had obvious renal pathological damage; blood glucose, blood lipids, renal function-related indexes, insulin, and inflammatory factors IL-1β, IL-6, IL-18, and TNF-α were increased ( P < 0.05 ); NLRP3, Caspase-1, and GSDMD expression was increased; Nrf2 expression was decreased; MDA level was increased ( P < 0.05 ); and the number of TUNEL-positive cells was increased. Compared with the model group, the pathological morphology of the kidney tissue of golden hamsters in the three treatment groups was significantly improved; blood glucose, blood lipids, renal function, and the expression of inflammatory factors IL-1β and IL-6 were reduced ( P < 0.05 ); NLRP3, Caspase-1, GSDMD, and other molecular proteins and mRNA expression were decreased; Nrf2 expression was increased; MDA level was decreased ( P < 0.05 ); and the number of TUNEL-positive cells was decreased. Conclusion. DN golden hamster kidney NLRP3-Caspase-1-GSDMD signalling was enhanced. BBR can reduce oxidative stress damage by regulating antioxidative Nrf2 and then regulating NLRP3-Caspase-1-GSDMD signalling to inhibit pyroptosis, antagonizing DN inflammation-induced damage.
ABSTRACT. The aim of this study was to investigate the expression of vascular adhesion molecule (VCAM)-1 in the maternal serum, cord blood, and placental tissue of pregnant women from Xingtai, Hebei, with gestational hypertension (GH) combined with fetal growth restriction (FGR). A total of 108 patients with GH combined with FGR (GH-FGR), 60 patients with GH alone (GH), and 50 healthy pregnant women (control) were recruited to this study. VCAM-1 expression was detected in the maternal serum and cord blood by enzyme-linked immunosorbent assay, and in the placental tissue by immunohistochemistry. VCAM-1 expression was significantly higher in the maternal serum of patients with GH-FGR (164.38 ± 60.35) and GH alone (103.85 ± 54.47) than in the serum of the control population (46.70 ± 21.79; P < 0.05). On the other hand, VCAM-1 expression in the cord blood of , GH (149.82 ± 58.20), and control (128.89 ± 43.59) subjects was not significantly different (P > 0.05). Moreover, the VCAM-1 expression rates were significantly higher and lower in the vascular endothelial and trophoblastic cells of the placenta of patients with GH-FGR (74.71 and 56.1%) and GH (72.98 and 55.36%), respectively, compared to those in the control subjects (46.48 and 95.11%). Therefore, we concluded that VCAM-1 plays an important role in the development and generation of GH. Additionally, the low VCAM-1 expression in the trophoblastic cell could be correlated to the pathogenesis and progression of GH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.