This paper mainly studies the dynamic response of composites with glass fiber as reinforcement and polypropylene resin as matrix under high-speed projectile penetration. The penetration effects of fiber unidirectional ply cross-ply and quasi-isotropic ply laminate were studied by using penetration velocities of 100–500 m/s. The effects of ply angle on ballistic limit velocity, target energy absorption rate and corresponding failure mode are analyzed. The correctness of the simulation model is verified by comparative experiments, and the ply angle of glass fiber reinforced polypropylene (GF/PP) composites is optimized. The results show that the energy absorption efficiency of the three kinds of laminated plates gradually decreases with the increase of the projectile incident velocity, and with the increase of the velocity, the absorption rate of the target plate gradually decreases tends to the same constant. The laminated plates with complex ply angles are simulated and analyzed, and the optimization results show that the ballistic limit velocity of fiber-reinforced composite laminates with ply angle of 30° is the highest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.