Urban particulate matter forecasting is regarded as an essential issue for early warning and control management of air pollution, especially fine particulate matter (PM2.5). However, existing methods for PM2.5 concentration prediction neglect the effects of featured states at different times in the past on future PM2.5 concentration, and most fail to effectively simulate the temporal and spatial dependencies of PM2.5 concentration at the same time. With this consideration, we propose a deep learning-based method, AC-LSTM, which comprises a one-dimensional convolutional neural network (CNN), long short-term memory (LSTM) network, and attention-based network, for urban PM2.5 concentration prediction. Instead of only using air pollutant concentrations, we also add meteorological data and the PM2.5 concentrations of adjacent air quality monitoring stations as the input to our AC-LSTM. Hence, the spatiotemporal correlation and interdependence of multivariate air quality-related time-series data are learned by the CNN–LSTM network in AC-LSTM. The attention mechanism is applied to capture the importance degrees of the effects of featured states at different times in the past on future PM2.5 concentration. The attention-based layer can automatically weigh the past feature states to improve prediction accuracy. In addition, we predict the PM2.5 concentrations over the next 24 h by using air quality data in Taiyuan city, China, and compare it with six baseline methods. To compare the overall performance of each method, the mean absolute error (MAE), root-mean-square error (RMSE), and coefficient of determination (R2) are applied to the experiments in this paper. The experimental results indicate that our method is capable of dealing with PM2.5 concentration prediction with the highest performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.