International audienceIn this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W 1 L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆ 2-condition. We conclude by discussing conditions for the existence of minima of I
In this article we consider the best polynomial approximation operator, defined in an Orlicz space L (B), and its extension to L (B) where is the derivative function of A characterization of these operators and several properties are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.