Recently Stocchino & Brocchini (J. Fluid Mech., vol. 643, 2010, p. 425 have studied the dynamics of two-dimensional (2D) large-scale vortices with vertical axis evolving in a straight compound channel under quasi-uniform flow conditions. The mixing processes associated with such vortical structures are here analysed through the results of a dedicated experimental campaign. Time-resolved Eulerian surface velocity fields, measured using a 2D particle-image velocimetry system, form the basis for a Lagrangian analysis of the dispersive processes that occur in compound channels when the controlling physical parameters, i.e. the flow depth ratio (rh) and the Froude number (Fr) are changed. Lagrangian mixing is studied by means of various approaches based either on single-particle or multiple-particle statistics (relative and absolute statistics, probability density functions (p.d.f.s) of relative displacements and finite-scale Lyapunov exponents). Absolute statistics reveal that transitional macrovortices, typical of shallow flow conditions, strongly influence the growth in time of the total absolute dispersion, after the initial ballistic regime, leading to a nonmonotonic behaviour. In deep flow conditions, on the contrary, the absolute dispersion displays a monotonic growth because the generation of transitional macrovortices does not take place. In all cases an asymptotic diffusive regime is reached. Multiple-particle dynamics is controlled by rh and Fr. Different growth regimes of the relative diffusivity have been found depending on the flow conditions. This behaviour can be associated with different energy transfer processes and it is further confirmed by the p.d.f.s of relative displacements, which show a different asymptotical shape depending on the separation scales and the Froude number. Finally, an equilibrium regime is observed for all the experiments by analysing the decay of the finite-scale Lyapunov exponents with the particle separations
[1] An experimental campaign, based on particle image velocimetry (PIV) measurements of free-surface velocities, forms the basis for an analysis of the mixing processes which occur in a compound-channel flow. The flow mixing is characterized in terms of Lagrangian statistics (absolute dispersion and diffusivity) and of the related mean flow characteristics. Mixing properties strongly depend on the ratio r h between the main channel flow depth (h à mc ) and the floodplain depth (h à fp ), and three flow classes can be identified, namely shallow, intermediate, and deep flows. In the present study the large time asymptotic behavior of the mixing characteristics is analyzed in terms of the absolute diffusivity in order to characterize typical values of longitudinal and transversal diffusivity coefficients. Various sets of experiments, which cover a wide range of the governing physical parameters, have been performed and the asymptotic values of the absolute diffusivity have been evaluated. The results are then compared with several studies of flow dispersion for both the longitudinal diffusivity coefficient and the transversal turbulent mixing coefficient. The present results highlight a stronger dependence of such coefficients with the flow-depth ratio than with the flow regime (Froude number).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.