Detailed neural encoding of voice pitch and formant structure plays a crucial role in speech perception, and is of key importance for an appropriate acquisition of the phonetic repertoire in infants since birth. However, the extent to what newborns are capable of extracting pitch and formant structure information from the temporal envelope and the temporal fine structure of speech sounds, respectively, remains unclear. Here, we recorded the frequency-following response (FFR) elicited by a novel two-vowel, rising-pitch-ending stimulus to simultaneously characterize voice pitch and formant structure encoding accuracy in a sample of neonates and adults. Data revealed that newborns tracked changes in voice pitch reliably and no differently than adults, but exhibited weaker signatures of formant structure encoding, particularly at higher formant frequency ranges. Thus, our results indicate a well-developed encoding of voice pitch at birth, while formant structure representation is maturing in a frequency-dependent manner. Furthermore, we demonstrate the feasibility to assess voice pitch and formant structure encoding within clinical evaluation times in a hospital setting, and suggest the possibility to use this novel stimulus as a tool for longitudinal developmental studies of the auditory system.
Infants born after fetal growth restriction (FGR)-an obstetric condition defined as the failure to achieve the genetic growth potential-are prone to neurodevelopmental delays, with language being one of the major affected areas. Yet, while verbal comprehension and expressive language impairments have been observed in FGR infants, children and even adults, specific related impairments at birth, such as in the ability to encode the sounds of speech, necessary for language acquisition, remain to be disclosed. Here, we used the frequency-following response (FFR), a brain potential correlate of the neural phase locking to complex auditory stimuli, to explore the encoding of speech sounds in FGR neonates. Fifty-three neonates born with FGR and 48 controls born with weight adequate-for-gestational age (AGA) were recruited. The FFR was recorded to the consonant-vowel stimulus (/da/) during sleep and quantified as the spectral amplitude to the fundamental frequency of the syllable and its signal-to-noise ratio (SNR). The outcome was available in 45 AGA and 51 FGR neonates, yielding no differences for spectral amplitudes. However, SNR was strongly attenuated in the FGR group compared to the AGA group at the vowel region of the stimulus. These findings suggest that FGR population present a deficit in the neural pitch tracking of speech sounds already present at birth. Our results pave the way for future research on the potential clinical use of the FFR in this population, so that if confirmed, a disrupted FFR recorded at birth may help deriving FGR neonates at risk for postnatal follow-ups.
Fetal hearing experiences shape the linguistic and musical preferences of neonates. From the very first moment after birth, newborns prefer their native language, recognize their mother's voice, and show a greater responsiveness to lullabies presented during pregnancy. Yet, the neural underpinnings of this experience inducing plasticity have remained elusive. Here we recorded the frequency‐following response (FFR), an auditory evoked potential elicited to periodic complex sounds, to show that prenatal music exposure is associated to enhanced neural encoding of speech stimuli periodicity, which relates to the perceptual experience of pitch. FFRs were recorded in a sample of 60 healthy neonates born at term and aged 12–72 hours. The sample was divided into two groups according to their prenatal musical exposure (29 daily musically exposed; 31 not‐daily musically exposed). Prenatal exposure was assessed retrospectively by a questionnaire in which mothers reported how often they sang or listened to music through loudspeakers during the last trimester of pregnancy. The FFR was recorded to either a /da/ or an /oa/ speech‐syllable stimulus. Analyses were centered on stimuli sections of identical duration (113 ms) and fundamental frequency (F0 = 113 Hz). Neural encoding of stimuli periodicity was quantified as the FFR spectral amplitude at the stimulus F0. Data revealed that newborns exposed daily to music exhibit larger spectral amplitudes at F0 as compared to not‐daily musically‐exposed newborns, regardless of the eliciting stimulus. Our results suggest that prenatal music exposure facilitates the tuning to human speech fundamental frequency, which may support early language processing and acquisition.Research Highlights Frequency‐following responses to speech were collected from a sample of neonates prenatally exposed to music daily and compared to neonates not‐daily exposed to music. Neonates who experienced daily prenatal music exposure exhibit enhanced frequency‐following responses to the periodicity of speech sounds. Prenatal music exposure is associated with a fine‐tuned encoding of human speech fundamental frequency, which may facilitate early language processing and acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.