Listeria monocytogenes is riboflavin auxotrophic, but it has two genes envisaged to transform riboflavin into FMN and FAD after its uptaked by specialized transporters. One encodes a bifunctional type I FAD synthase (FADS, herein LmFADS-1), while the other produces a protein similar to type I at the FMN:ATP adenylyltransferase (FMNAT) site but with a shorter C-terminal that lacks any riboflavin kinase (RFK) motif. This second protein is rare among bacteria and has been named FADS type II (LmFADS-2). Here we present a biochemical and biophysical study of LmFADS-1 and LmFADS-2 by integrating kinetic and thermodynamic data together with sequence and structural prediction methods to evaluate their occurrence in Listeria, as well as their function and molecular properties. Despite LmFADS-1 similarities to other type I FADSs, (i) its RFK activity has not riboflavin substrate inhibition and occurs under reducing and oxidizing conditions, (ii) its FMNAT activity requires strong reducing environment, and (iii) binding of reaction products, but not substrates, favors binding of the second ligand. LmFADS-2 produces FAD under oxidizing and reducing environments, but its C-terminus module function remains unknown. Listeria species conserve both FADSs, being sequence identity high within L. monocytogenes strains. Our data exemplify alternative strategies for FMN and FAD biosynthesis and homeostasis, envisaging that in Listeria two FADSs might be required to fulfill the supply of flavin cofactors under niches that can go from saprophytism to virulence. As FADSs are attractive antimicrobial targets, understanding of FADSs traits in different species is essential to help in the discovery of specific antimicrobials.
Bifunctional FAD synthetases (FADSs) fold in two independent modules; The C-terminal riboflavin kinase (RFK) catalyzes the RFK activity, while the N-terminal FMN-adenylyltransferase (FMNAT) exhibits the FMNAT activity. The search for macromolecular interfaces in the Corynebacterium ammoniagenes FADS (CaFADS) crystal structure predicts a dimer of trimers organization. Within each trimer, a head-to-tail arrangement causes the RFK and FMNAT catalytic sites of the two neighboring protomers to approach, in agreement with active site residues of one module influencing the activity at the other. We analyze the relevance of the CaFADS head-to-tail macromolecular interfaces to stabilization of assemblies, catalysis and ligand binding. With this aim, we evaluate the effect of point mutations in loop L1c-FlapI, loop L6c, and helix α1c of the RFK module (positions K202, E203, F206, D298, V300, E301 and L304), regions at the macromolecular interface between two protomers within the trimer. Although none of the studied residues is critical in the formation and dissociation of assemblies, residues at L1c-FlapI and helix α1c particularly modulate quaternary architecture, as well as ligand binding and kinetic parameters involved with RFK and FMNAT activities. These data support the influence of transient oligomeric structures on substrate accommodation and catalysis at both CaFADS active sites.
BackgroundFlavin adenine dinucleotide synthetases (FADSs) - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN) and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history.ResultsUsing a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus.ConclusionsA structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.