Agricultural monitoring systems require spatio-temporal information on widely cultivated staple crops like rice. More emphasis has been made on area estimation and crop detection than on the temporal aspects of crop cultivation, but seasonal and temporal information such as i) crop duration, ii) date of crop establishment and iii) cropping intensity are as important as area for understanding crop production. Rice cropping systems are diverse because genetic, environmental and management factors (GxExM combinations) influence the spatio-temporal patterns of cultivation. We present a rule based algorithm called PhenoRice for automatic extraction of temporal information on the rice crop using moderate resolution hypertemporal optical imagery from MODIS. Performance of PhenoRice against spatially and temporally explicit reference information was tested in three diverse sites: rice-fallow (Italy), rice-other crop (India) and rice-rice (Philippines) systems. Regional product accuracy assessments showed that PhenoRice made a conservative, spatially representative and robust detection of rice cultivation in all sites (r 2 between 0.75 and 0.92) and crop establishment dates were in close agreement with the reference data (r 2 = 0.98, Mean Error = 4.07 days, Mean Absolute Error = 9.95 days, p < 0.01). Variability in algorithm performance in different conditions in each site (irrigated vs rainfed, direct seeding vs transplanting, fragmented vs clustered rice landscapes and the impact of cloud contamination) was analysed and discussed. Analysis of the maps revealed that cropping intensity and season length per site matched well with local information on agro-practices and cultivated varieties. The results show that PhenoRice is robust for deriving essential temporal descriptions of rice systems in both temperate and tropical regions at a level of spatial and temporal detail that is suitable for regional crop monitoring on a seasonal basis. This work is licensed under a Creative Commons "Attribution-NonCommercial-NoDerivatives 4.0 International" license.
Different rice crop information can be derived from different remote sensing sources to provide information for decision making and policies related to agricultural production and food security. The objective of this study is to generate complementary and comprehensive rice crop information from hypertemporal optical and multitemporal high-resolution SAR imagery. We demonstrate the use of MODIS data for rice-based system characterization and X-band SAR data from TerraSAR-X and CosmoSkyMed for the identification and detailed mapping of rice areas and flooding/transplanting dates. MODIS was classified using ISODATA to generate cropping calendar, cropping intensity, cropping pattern and rice ecosystem information. Season and location specific thresholds from field observations were used to generate detailed maps of rice areas and flooding/transplanting dates from the SAR data. Error matrices were used for the accuracy assessment of the MODIS-derived rice characteristics map and the SAR-derived detailed rice area map, while Root Mean Square Error (RMSE) and linear correlation were used to assess the TSX-derived flooding/transplanting dates. Results showed that multitemporal high spatial resolution SAR data is effective for mapping rice areas and flooding/transplanting dates with an overall accuracy of 90% and a kappa of 0.72 and that hypertemporal moderate-resolution optical imagery is effective for the basic characterization of rice areas with an overall accuracy that ranged from 62% to 87% and a kappa of 0.52 to 0.72. This study has also provided the first assessment of the temporal variation in the backscatter of rice from CSK and TSX using large incidence angles covering all rice crop stages from pre-season until harvest. This complementarity in optical and SAR data can be further exploited in the near future with the increased availability of space-borne optical and SAR sensors. This new information can help improve the identification of rice areas.
The objective of this study is to provide complete information on the dynamic relationship between X-band (3.11 cm) backscattering intensity (σ • ) and rice crop's leaf area index (LAI) at all growth phases. Though the relationship between X-band σ • and LAI has been previously explored, details on the relationship at the reproductive phase remain unstudied. LAI at the reproductive phase is important particularly at the heading stage where LAI reaches its maximum as it is closely related to grain yield, and at flowering stage where the total leaf area affects the amount of photosynthates. Therefore, this study examined the relationship of increasing LAI (vegetative to reproductive phase) and decreasing LAI (ripening phase) with TerraSAR-X (TSX) ScanSAR (3.11 cm) σ • at HH polarisation and 45 • incidence angle. The results showed a statistically significant (R 2 = 0.51, p value < 0.001) non-linear relationship of LAI with σ • at the vegetative to reproductive phase while no significant linear relationship was found at the ripening phase. This study completes the response curve of X-band σ • to LAI by filling in the information on the reproductive phase which more accurately characterises the dynamic relationship between the rice crop's LAI and X-band's σ • . This contributes to improved knowledge on the use of X-band data for estimating LAI for the whole crop cycle which is essential for the modelling of crop growth and estimation of yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.